Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe2As2

Abstract

Superconductivity has recently been discovered in several families of iron-based compounds, but despite intense research even such basic electronic properties of these materials as Fermi surfaces, effective electron masses and orbital characters are still subject to debate. Here, we address an issue that has not been considered before, namely the consequences of dynamical screening of the Coulomb interactions between Fe d electrons. We demonstrate that dynamical screening effects are important not only for higher-energy spectral features, such as correlation satellites seen in photoemission spectroscopy, but also for the low-energy electronic structure. Our analysis indicates that BaFe2As2 is a strongly correlated compound with strongly doping- and temperature-dependent properties. In the hole-overdoped regime an incoherent metal is found, whereas Fermi-liquid behaviour is recovered in the undoped compound. At optimal doping, the self-energy exhibits an unusual square-root energy dependence, which leads to strong band renormalizations near the Fermi level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency-dependent interaction for BaFe2As2 from constrained RPA.
Figure 2: Effect of U(ω) on the d-electron spectral function.
Figure 3: NFL behaviour of the self-energy.
Figure 4: Orbitally resolved spectral functions for optimally doped BaFe2As2 at T=145 K.
Figure 5: Doping and temperature dependence of the low-energy spectral functions, and comparison with photoemission experiments.

Similar content being viewed by others

References

  1. Kamihara, Y. et al. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  Google Scholar 

  2. Alireza, P. M. et al. Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J. Phys. Condens. Matter 21, 012208 (2009).

    Article  ADS  Google Scholar 

  3. Kimber, S. A. J. et al. Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2 . Nature Mater. 8, 471–475 (2009).

    Article  ADS  Google Scholar 

  4. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  5. Sefat, A. S. et al. Superconductivity at 22 K in Co-doped BaFe2As2 crystals. Phys. Rev. Lett. 101, 117004 (2008).

    Article  ADS  Google Scholar 

  6. Liu, C. et al. K-doping dependence of the Fermi surface of the iron–arsenic Ba1−xKxFe2As2 superconductor using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 101, 177005 (2008).

    Article  ADS  Google Scholar 

  7. Brouet, V. et al. Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2 . Phys. Rev. Lett. 105, 087001 (2010).

    Article  ADS  Google Scholar 

  8. Ding, H. et al. Electronic structure of optimally doped pnictide Ba0.6K0.4Fe2As2: A comprehensive angle-resolved photoemission spectroscopy investigation. J. Phys. Condens. Matter 23, 135701 (2011).

    Article  ADS  Google Scholar 

  9. Koitzsch, A. et al. Temperature and doping-dependent renormalization effects of the low energy electronic structure of Ba1−xKxFe2As2 single crystals. Phys. Rev. Lett. 102, 167001 (2009).

    Article  ADS  Google Scholar 

  10. Fink, J. et al. Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy. Phys. Rev. B 79, 155118 (2009).

    Article  ADS  Google Scholar 

  11. Zhang, Y. et al. Orbital characters of bands in the iron-based superconductor BaFe1.85Co0.15As2 . Phys. Rev. B 83, 054510 (2011).

    Article  ADS  Google Scholar 

  12. Mansart, B. et al. Orbital nature of the hole-like Fermi surface in superconducting Ba(Fe1−xCox)2As2 . Phys. Rev. B 83, 064516 (2011).

    Article  ADS  Google Scholar 

  13. Wen, H-H. & Li, S. Materials and novel superconductivity in iron pnictide superconductors. Annu. Rev. Condens. Matter Phys. 2, 121–140 (2011).

    Article  ADS  Google Scholar 

  14. Singh, D. J. Electronic structure and doping in BaFe2As2 and LiFeAs: Density functional calculations. Phys. Rev. B 78, 094511 (2008).

    Article  ADS  Google Scholar 

  15. Yi, M. et al. Electronic structure of the BaFe2As2 family of iron-pnictide superconductors. Phys. Rev. B 80, 024515 (2009).

    Article  ADS  Google Scholar 

  16. Brouet, V. et al. Orbitally resolved lifetimes in Ba(Fe0.92Co0.08)2As2 measured by ARPES. Preprint at http://arxiv.org/abs/1105.5604 (2011).

  17. Ding, H. et al. Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 . Europhys. Lett. 83, 47001 (2008).

    Article  ADS  Google Scholar 

  18. Kuroki, K. et al. Unconventional pairing originating from disconnected Fermi surfaces in superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  19. Onari, S., Kontani, H. & Sato, M. Structure of neutron-scattering peaks in both s++-wave and s++-wave states of an iron pnictide superconductor. Phys. Rev. B 81, 060504(R) (2010).

    Article  ADS  Google Scholar 

  20. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  21. Anisimov, V. I., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O. & Kotliar, G. First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory. J. Phys. Condens. Matter 9, 7359–7367 (1997).

    Article  ADS  Google Scholar 

  22. Lichtenstein, A. I. & Katsnelson, M. I. Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57, 6884–6895 (1998).

    Article  ADS  Google Scholar 

  23. Skornyakov, S. L. et al. Classification of the electronic correlation strength in the iron pnictides: The case of the parent compound BaFe2As2 . Phys. Rev. B 80, 092501 (2009).

    Article  ADS  Google Scholar 

  24. Shim, J. H., Haule, K. & Kotliar, G. Density-functional calculations of the electronic structures and magnetism of the pnictide superconductors BaFeAs2 and BaFeSb2 . Phys. Rev. B 79, 060501 (2009).

    Article  ADS  Google Scholar 

  25. Aichhorn, M. et al. Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO. Phys. Rev. B 80, 085101 (2009).

    Article  ADS  Google Scholar 

  26. Kutepov, A., Haule, K., Savrasov, S. Y. & Kotliar, G. Self-consistent GW determination of the interaction strength: Application to the iron arsenide superconductors. Phys. Rev. B 82, 045105 (2010).

    Article  ADS  Google Scholar 

  27. Aryasetiawan, F. et al. Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B 70, 195104 (2004).

    Article  ADS  Google Scholar 

  28. Miyake, T. & Aryasetiawan, F. Screened Coulomb interaction in the maximally localized Wannier basis. Phys. Rev. B 77, 085122 (2008).

    Article  ADS  Google Scholar 

  29. Yin, Z. P., Haule, K. & Kotliar, G. Magnetism and charge dynamics in iron pnictides. Nature Phys. 7, 294–297 (2011).

    Article  ADS  Google Scholar 

  30. Werner, P. & Millis, A. J. Efficient DMFT-simulation of the Holstein–Hubbard model. Phys. Rev. Lett. 99, 146404 (2007).

    Article  ADS  Google Scholar 

  31. Werner, P. & Millis, A. J. Dynamical screening in correlated electron materials. Phys. Rev. Lett. 104, 146401 (2010).

    Article  ADS  Google Scholar 

  32. Werner, P., Comanac, A., De’ Medici, L., Troyer, M. & Millis, A. J. A continuous-time solver for quantum impurity models. Phys. Rev. Lett. 97, 076405 (2006).

    Article  ADS  Google Scholar 

  33. Casula, M., Rubtsov, A. & Biermann, S. Dynamical screening effects in correlated materials: Plasmon satellites and spectral weight transfers from a Green’s function ansatz to extended dynamical mean field theory. Phys. Rev. B 85, 035115 (2012).

    Article  ADS  Google Scholar 

  34. de Jong, S. et al. High-resolution, hard x-ray photoemission investigation of BaFe2As2: Moderate influence of the surface and evidence for a low degree of Fe3dAs4p hybridization of electronic states near the Fermi energy. Phys. Rev. B 79, 115125 (2009).

    Article  ADS  Google Scholar 

  35. Werner, P., Gull, E., Troyer, M. & Millis, A. J. Spin freezing transition and non-Fermi-liquid self-energy in a 3-orbital model. Phys. Rev. Lett. 101, 166405 (2008).

    Article  ADS  Google Scholar 

  36. Haule, K. & Kotliar, G. Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling. New J. Phys. 11, 025021 (2009).

    Article  ADS  Google Scholar 

  37. Aichhorn, M., Biermann, S., Miyake, T., Georges, A. & Imada, M. Theoretical evidence for strong correlations and incoherent metallic state in FeSe. Phys. Rev. B 82, 064504 (2010).

    Article  ADS  Google Scholar 

  38. Ishida, H. & Liebsch, A. Fermi-liquid, non-Fermi-liquid, and Mott phases in iron pnictides and cuprates. Phys. Rev. B 81, 054513 (2010).

    Article  ADS  Google Scholar 

  39. Popovich, P. et al. Specific heat measurements of Ba0.68K0.32Fe2As2 single crystals: Evidence for a multiband strong-coupling superconducting state. Phys. Rev. Lett. 105, 027003 (2010).

    Article  ADS  Google Scholar 

  40. Andersen, O. K. & Boeri, L. On the multi-orbital band structure and itinerant magnetism of iron-based superconductors. Ann. Phys. 523, 8–50 (2011).

    Article  Google Scholar 

  41. Sato, T. et al. Band structure and Fermi surface of an extremely overdoped iron-based superconductor KFe2As2 . Phys. Rev. Lett. 103, 047002 (2009).

    Article  ADS  Google Scholar 

  42. Yoshida, T. et al. Fermi surfaces and quasi-particle band dispersions of the iron pnictides superconductor KFe2As2 observed by angle-resolved photoemission spectroscopy. Proc. 9th International Conference on Spectroscopies in Novel Superconductors (SNS2010), (2010).

  43. Si, Q. & Smith, J. L. Kosterlitz–Thouless transition and short range spatial correlations in an extended Hubbard model. Phys. Rev. Lett. 77, 3391–3394 (1996).

    Article  ADS  Google Scholar 

  44. Kajueter, H. Ph.D. thesis, Rutgers Univ. (1996).

  45. Biermann, S., Aryasetiawan, F. & Georges, A. First-principles approach to the electronic structure of strongly correlated systems: Combining the G W approximation and dynamical mean-field theory. Phys. Rev. Lett. 90, 086402 (2003).

    Article  ADS  Google Scholar 

  46. Albuquerque, A. F. et al. The ALPS project release 1.3: Open source software for strongly correlated systems. J. Magn. Magn. Mater. 310, 1187–1193 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Aichhorn, H. Aoki, R. Arita, V. Brouet, H. Ding, T. Qian and L. Vaugier for discussions. The DMFT calculations were run on the Brutus cluster at ETH (Eidgenössische Technische Hochschule) Zurich using a code based on ALPS (ref. 46). We thank E. Gull for providing the code for the DMFT-self-consistency loop. This work was supported by the Swiss National Science Foundation (grant PP0022-118866), the G-COE program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT; G-03), the French Agence Nationale de la Recherche under project CORRELMAT, Institut du Développement et des Ressources en Informatique Scientifique/Grand Equipement National de Calcul Intensif Orsay under project 20111393 and the US National Science Foundation under grant DMR-1006282. We also acknowledge the hospitality of the Kavli Institute for Theoretical Physics Santa Barbara, where this work was initiated.

Author information

Authors and Affiliations

Authors

Contributions

S.B. proposed the specific materials project, T.M. provided the LDA Hamiltonian and frequency-dependent interaction, P.W. carried out the DMFT calculations and M.C. did the data analysis (analytical continuation) and produced the figures. P.W. and S.B. wrote the manuscript, with help from the other authors. All authors participated in the planning of the study and the interpretation of the data.

Corresponding author

Correspondence to Philipp Werner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, P., Casula, M., Miyake, T. et al. Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe2As2. Nature Phys 8, 331–337 (2012). https://doi.org/10.1038/nphys2250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing