Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3

Abstract

Topological defects in ferroic materials are attracting much attention both as a playground of unique physical phenomena and for potential applications in reconfigurable electronic devices. Here, we explore electronic transport at artificially created ferroelectric vortices in BiFeO3 thin films. The creation of one-dimensional conductive channels activated at voltages as low as 1 V is demonstrated. We study the electronic as well as the static and dynamic polarization structure of several topological defects using a combination of first-principles and phase-field modelling. The modelling predicts that the core structure can undergo a reversible transformation into a metastable twist structure, extending charged domain walls segments through the film thickness. The vortex core is therefore a dynamic conductor controlled by the coupled response of polarization and electron–mobile-vacancy subsystems with external bias. This controlled creation of conductive one-dimensional channels suggests a pathway for the design and implementation of integrated oxide electronic devices based on domain patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic properties of topological defects in ferroelectrics.
Figure 2: Changes of the domain structure during measurement of the electronic properties of topological defects.
Figure 3: High resolution imaging of the observed domain wall twist.
Figure 4: DFT calculation of the electronic structure at the vortex.
Figure 5: Phase-field modelling of the vortex/antivortex domain arrangement.
Figure 6: Phase-field modelling of the locally biased vortex/antivortex domain arrangement.

Similar content being viewed by others

References

  1. Mermin, N. D. Topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  2. Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in Ferroelectric Crystals and Thin Films (Springer, 2010).

    Book  Google Scholar 

  3. Blatter, G., Feigelman, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  Google Scholar 

  4. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nature Phys. 5, 298–303 (2009).

    Article  ADS  Google Scholar 

  5. Salje, E. & Zhang, H. L. Domain boundary engineering. Phase Transit. 82, 452–469 (2009).

    Article  Google Scholar 

  6. Sonin, E. B. & Tagantsev, A. K. Circulation lines and motion of antiphase walls in improper ferroelectrics. Zh. Éksp. Teor. Fiz 94, 315–328 (1988).

    Google Scholar 

  7. Tagantsev, A. K. & Sonin, E. B. Linear singularities and their motion in improper ferroelectrics. Ferroelectrics 98, 297–300 (1989).

    Article  Google Scholar 

  8. Sonin, E. B. & Tagantsev, A. K. Structure and phase-transitions in antiphase boundaries of improper ferroelectrics. Ferroelectrics 98, 291–295 (1989).

    Article  Google Scholar 

  9. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  ADS  Google Scholar 

  10. Kim, Y., Alexe, M. & Salje, E. K. H. Nanoscale properties of thin twin walls and surface layers in piezoelectric W O3−x . Appl. Phys. Lett. 96, 032904 (2010).

    Article  ADS  Google Scholar 

  11. Tselev, A. et al. Mesoscopic metal–insulator transition at ferroelastic domain walls in VO2. ACS Nano 4, 4412–4419 (2010).

    Article  Google Scholar 

  12. Daraktchiev, M., Catalan, G. & Scott, J. F. Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 224118 (2010).

    Article  ADS  Google Scholar 

  13. Salafranca, J., Yu, R. & Dagotto, E. Conducting Jahn–Teller domain walls in undoped manganites. Phys. Rev. B 81, 245122 (2010).

    Article  ADS  Google Scholar 

  14. Goncalves-Ferreira, L., Redfern, S. A. T., Artacho, E., Salje, E. & Lee, W. T. Trapping of oxygen vacancies in the twin walls of perovskite. Phys. Rev. B 81, 024109 (2010).

    Article  ADS  Google Scholar 

  15. Gruverman, A. et al. Vortex ferroelectric domains. J. Phys. Condens. Matter 20, 342201 (2008).

    Article  Google Scholar 

  16. Rodriguez, B. J. et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127–1131 (2009).

    Article  ADS  Google Scholar 

  17. Ivry, Y., Chu, D. P., Scott, J. F. & Durkan, C. Flux closure vortexlike domain structures in ferroelectric thin films. Phys. Rev. Lett. 104, 207602 (2010).

    Article  ADS  Google Scholar 

  18. McGilly, L. J., Schilling, A. & Gregg, J. M. Domain bundle boundaries in single crystal BaTiO3 lamellae: Searching for naturally forming dipole flux-closure/quadrupole chains. Nano Lett. 10, 4200–4205 (2010).

    Article  ADS  Google Scholar 

  19. Wu, Z. et al. Unusual vortex structure in ultrathin Pb(Zr0.5Ti0.5)O3 films. J. Appl. Phys. 101, 014112 (2007).

    Article  ADS  Google Scholar 

  20. Naumov, I. & Fu, H. Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles. Phys. Rev. Lett. 98, 077603 (2007).

    Article  ADS  Google Scholar 

  21. Slutsker, J., Artemev, A. & Roytburd, A. Phase-field modeling of domain structure of confined nanoferroelectrics. Phys. Rev. Lett. 100, 087602 (2008).

    Article  ADS  Google Scholar 

  22. Prosandeev, S., Ponomareva, I., Naumov, I., Kornev, I. & Bellaiche, L. Original properties of dipole vortices in zero-dimensional ferroelectrics. J. Phys. Condens. Matter 20, 193201 (2008).

    Article  ADS  Google Scholar 

  23. Wang, J. Switching mechanism of polarization vortex in single-crystal ferroelectric nanodots. Appl. Phys. Lett. 97, 192901 (2010).

    Article  ADS  Google Scholar 

  24. Jia, C-L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3 . Science 331, 1420–1423 (2011).

    Article  ADS  Google Scholar 

  25. Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

    Article  ADS  Google Scholar 

  26. McQuaid, R. G. P., McGilly, L. J., Sharma, P., Gruverman, A. & Gregg, J. M. Mesoscale flux-closure domain formation in single-crystal BaTiO3 . Nature Commun. 2, 404 (2011).

    ADS  Google Scholar 

  27. Balke, N. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nature Nanotechnol. 4, 868–875 (2009).

    Article  ADS  Google Scholar 

  28. Maksymovych, P. et al. Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421–1425 (2009).

    Article  ADS  Google Scholar 

  29. Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P. & Rodriguez, B. J. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).

    Article  ADS  Google Scholar 

  30. Buhlmann, S., Colla, E. & Muralt, P. Polarization reversal due to charge injection in ferroelectric films. Phys. Rev. B 72, 214120 (2005).

    Article  ADS  Google Scholar 

  31. Kholkin, A. L., Bdikin, I. K., Shvartsman, V. V. & Pertsev, N. A. Anomalous polarization inversion in ferroelectrics via scanning force microscopy. Nanotechnology 18, 095502 (2007).

    Article  ADS  Google Scholar 

  32. Sichuga, D., Ren, W., Prosandeev, S. & Bellaiche, L. Chiral patterns of tilting of oxygen octahedra in zero-dimensional ferroelectrics and multiferroics: A first principle-based study. Phys. Rev. Lett. 104, 207603 (2010).

    Article  ADS  Google Scholar 

  33. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3 . Phys. Rev. B 71, 014113 (2005).

    Article  ADS  Google Scholar 

  34. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Ya. Shur, V. Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors. Phys. Rev. B 83, 235313 (2011).

    Article  ADS  Google Scholar 

  35. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  Google Scholar 

  36. Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3 . Nano Lett. 11, 1906–1912 (2011).

    Article  ADS  Google Scholar 

  37. Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    Article  ADS  Google Scholar 

  38. Biegalski, M. D., Doerr, K., Kim, D. H. & Christen, H. M. Applying uniform reversible strain to epitaxial oxide films. Appl. Phys. Lett. 96, 151905 (2010).

    Article  ADS  Google Scholar 

  39. Rosenwaks, Y., Dahan, D., Molotskii, M. & Rosenman, G. Ferroelectric domain engineering using atomic force microscopy tip arrays in the domain breakdown regime. Appl. Phys. Lett. 86, 012909 (2005).

    Article  ADS  Google Scholar 

  40. Cen, C., Thiel, S., Mannhart, J. & Levy, J. Oxide nanoelectronics on demand. Science 323, 1026–1030 (2009).

    Article  ADS  Google Scholar 

  41. Martin, L. W. et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050–2055 (2008).

    Article  ADS  Google Scholar 

  42. Zavaliche, F. et al. Ferroelectric domain structure in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 182912 (2005).

    Article  ADS  Google Scholar 

  43. Zhang, J. X., Schlom, D. G., Chen, L. Q. & Eom, C. B. Tuning the remanent polarization of epitaxial ferroelectric thin films with strain. Appl. Phys. Lett. 95, 122904 (2009).

    Article  ADS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  45. Kornev, I., Lisenkov, S., Haumont, R., Dkhil, B. & Bellaiche, L. Finite-temperature properties of multiferroic BiFeO3 . Phys. Rev. Lett. 99, 227602 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Experiments were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy. Support was provided by the Division of Scientific User Facilities (N.B.) and by the Materials Sciences and Engineering Division (S.V.K.) of the US Department of Energy, Basic Energy Sciences. B.W., J.B. and L.Q.C. are supported by US Department of Energy, Basic Sciences, under Grant No. DE-FG02-07ER46417. L.B. thanks mostly support from the Department of Energy, Office of Basic Energy Sciences, under contract ER-46612. L.B. also thanks the National Science Foundation grants DMR-1066158 and DMR-0701558, and Office of Naval Research grants N00014-11-1-0384, N00014-08-1-0915 and N00014-07-1-0825. Some computations were also made possible thanks to the National Science Foundation grant 0722625 and a challenge grant from the US Department of Defense. Y.H.C. acknowledges the support of the National Science Council, Republic of China, under contract NSC-100-2811-M-009-003. M.H. acknowledges support by the Netherlands Organization for Scientific Research (NWO) through a VENI grant.

Author information

Authors and Affiliations

Authors

Contributions

N.B. and S.V.K. conceived and designed the experiments, and wrote the article. N.B. performed the experiments. B.W., J.B. and L.Q.C. performed phase-field modelling. W.R., L.B. and I.K. performed DFT calculations. A.N.M. and E.A.E. provided analytical theory for vortex structure and vacancy segregation. M.H., Y.H.C. and R.R. contributed materials and S.J. developed spectroscopic measurement technique and analysis tools. S.V.K., P.M. and R.K.V. co-wrote the article. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Nina Balke or Sergei V. Kalinin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 838 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balke, N., Winchester, B., Ren, W. et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nature Phys 8, 81–88 (2012). https://doi.org/10.1038/nphys2132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing