Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localization of preformed Cooper pairs in disordered superconductors

Abstract

The most profound effect of disorder on electronic systems is the localization of the electrons transforming an otherwise metallic system into an insulator. If the metal is also a superconductor then, at low temperatures, disorder can induce a pronounced transition from a superconducting into an insulating state. An outstanding question is whether the route to insulating behaviour proceeds through the direct localization of Cooper pairs or, alternatively, by a two-step process in which the Cooper pairing is first destroyed followed by the standard localization of single electrons. Here we address this question by studying the local superconducting gap of a highly disordered amorphous superconductor by means of scanning tunnelling spectroscopy. Our measurements reveal that, in the vicinity of the superconductor–insulator transition, the coherence peaks in the one-particle density of states disappear whereas the superconducting gap remains intact, indicating the presence of localized Cooper pairs. Our results provide the first direct evidence that the superconductor–insulator transition in some homogeneously disordered materials is driven by Cooper-pair localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherent versus incoherent Cooper pairing revealed by local tunnelling spectroscopy.
Figure 2: Disorder-induced inhomogeneity and phase incoherence.
Figure 3: Local pairing field.
Figure 4: Onset of the superconducting phase coherence.

Similar content being viewed by others

References

  1. Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (November, 1998).

    Article  Google Scholar 

  2. Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000).

    Article  ADS  Google Scholar 

  3. Steiner, M. A., Boebinger, G. & Kapitulnik, A. Possible field-tuned superconductor–insulator transition in high-Tc superconductors: Implications for pairing at high magnetic fields. Phys. Rev. Lett. 94, 107008 (2005).

    Article  ADS  Google Scholar 

  4. Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum gases under control. Nature Phys. 6, 87–95 (2010).

    Article  ADS  Google Scholar 

  5. Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    Article  ADS  Google Scholar 

  6. Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).

    Article  ADS  Google Scholar 

  7. Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005).

    Article  ADS  Google Scholar 

  8. Anderson, P. W. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30 (1959).

    Article  ADS  Google Scholar 

  9. Abrikosov, A. A. & Gorkov, L. P. On the theory of superconducting alloys.1. The electrodynamics of alloys at absolute zero. Sov. Phys. JETP 8, 1090–1098 (1959).

    MathSciNet  Google Scholar 

  10. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  11. Bulaevskii, L. N. & Sadovskii, M. V. Localization and superconductivity. Pis’ma Eksp. Teor. Fiz. Zh. 39, 524–527 (1984); JETP Lett. 39, 640–643 (1984).

    Google Scholar 

  12. Sadovskii, M. V. Superconductivity and localization. Phys. Rep. 282, 226–348 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  13. Kapitulnik, A. & Kotliar, G. Anderson localization and the theory of dirty superconductors. Phys. Rev. Lett. 54, 473–476 (1985).

    Article  ADS  Google Scholar 

  14. Ma, M. & Lee, P. A. Localized superconductors. Phys. Rev. B 32, 5658–5667 (1985).

    Article  ADS  Google Scholar 

  15. Kotliar, G. & Kapitulnik, A. Anderson localization and the theory of dirty superconductors. II. Phys. Rev. B 33, 3146–3157 (1986).

    Article  ADS  Google Scholar 

  16. Feigel’man, M. V., Ioffe, L. B., Kravtsov, V. E. & Yuzbashyan, E. A. Eigenfunction fractality and pseudogap state near the superconductor–insulator transition. Phys. Rev. Lett. 98, 027001 (2007).

    Article  ADS  Google Scholar 

  17. Ghosal, A., Randeria, M. & Trivedi, N. Role of spatial amplitude fluctuations in highly disordered s-wave superconductors. Phys. Rev. Lett. 81, 3940–3943 (1998).

    Article  ADS  Google Scholar 

  18. Ghosal, A., Randeria, M. & Trivedi, N. Inhomogeneous pairing in highly disordered s-wave superconductors. Phys. Rev. B 65, 014501 (2001).

    Article  ADS  Google Scholar 

  19. Finkel’stein, A. M. Superconducting transition temperature in amorphous films. Zh. Eksp. Teor. Fiz. Pis’ma Red. 45, 37–40 (1987); JETP Lett. 45, 46–49 (1987).

    ADS  Google Scholar 

  20. Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).

    Article  ADS  Google Scholar 

  21. Hebard, A. F. & Paalanen, M. A. Magnetic-field-tuned superconductor–insulator transition in two-dimensional films. Phys. Rev. Lett. 65, 927–930 (1990).

    Article  ADS  Google Scholar 

  22. Shahar, D. & Ovadyahu, Z. Superconductivity near the mobility edge. Phys. Rev. B 46, 10917–10922 (1992).

    Article  ADS  Google Scholar 

  23. Gantmakher, V. F., Golubkov, M. V., Dolgopolov, V. T., Tsydynzhapov, G. E. & Shahskin, A. A. Destruction of localized electron pairs above the magnetic-field-driven superconductor–insulator transition in amorphous In–O films. JETP Lett. 68, 363–369 (1998).

    Article  ADS  Google Scholar 

  24. Steiner, M. & Kapitulnik, A. Superconductivity in the insulating phase above the field-tuned superconductor–insulator transition in disordered indium oxide films. Physica C 422, 16–26 (2005).

    Article  ADS  Google Scholar 

  25. Crane, R. et al. Survival of superconducting correlations across the two-dimensional superconductor–insulator transition: A finite-frequency study. Phys. Rev. B 75, 184530 (2007).

    Article  ADS  Google Scholar 

  26. Hadacek, N., Sanquer, M. & Villégier, J-C. Double reentrant superconductor–insulator transition in thin TiN films. Phys. Rev. B 69, 024505 (2004).

    Article  ADS  Google Scholar 

  27. Baturina, T. I., Mironov, A. Y., Vinokur, V. M., Baklanov, M. R. & Strunk, C. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor–insulator transition in TiN thin films. Phys. Rev. Lett. 99, 257003 (2007).

    Article  ADS  Google Scholar 

  28. Dubi, Y., Meir, Y. & Avishai, Y. Nature of the superconductor–insulator transition in disordered superconductors. Nature 449, 876–880 (2007).

    Article  ADS  Google Scholar 

  29. Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).

    Article  ADS  Google Scholar 

  30. Feigel’man, M. V., Ioffe, L. B., Kravtsov, V. E. & Cuevas, E. Fractal superconductivity near localization threshold. Ann. Phys. 325, 1390–1478 (2010).

    Article  ADS  Google Scholar 

  31. Sambandamurthy, G., Engel, L. W., Johansson, A. & Shahar, D. Superconductivity-related insulating behavior. Phys. Rev. Lett. 92, 107005 (2004).

    Article  ADS  Google Scholar 

  32. Baturina, T. I., Strunk, C., Baklanov, M. R. & Satta, A. Quantum metallicity on the high-field side of the superconductor–insulator transition. Phys. Rev. Lett. 98, 127003 (2007).

    Article  ADS  Google Scholar 

  33. Stewart, M. D. Jr, Yin, A., Xu, J. M. & Valles, J. M. Jr Superconducting pair correlations in an amorphous insulating nanohoneycomb film. Science 318, 1273–1275 (2007).

    Article  ADS  Google Scholar 

  34. Nguyen, H. Q. et al. Observation of giant positive magnetoresistance in a Cooper pair insulator. Phys. Rev. Lett. 103, 157001 (2009).

    Article  ADS  Google Scholar 

  35. Sacépé, B. et al. Disorder-induced inhomogeneities of the superconducting state close to the superconductor–insulator transition. Phys. Rev. Lett. 101, 157006 (2008).

    Article  ADS  Google Scholar 

  36. Giaever, I. Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960).

    Article  ADS  Google Scholar 

  37. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  ADS  Google Scholar 

  38. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  39. Sacépé, B. et al. Fluctuation-induced pseudogap in thin conventional superconducting films. Preprint at http://arxiv.org/abs/0906.1193.

  40. Ioffe, L. B. & Mézard, M. Disorder-driven quantum phase transitions in superconductors and magnets. Phys. Rev. Lett. 105, 037001 (2010).

    Article  ADS  Google Scholar 

  41. Feigelman, M. V., Ioffe, L. B. & Mézard, M. Superconductor–insulator transition and energy localization. Phys. Rev. B 82, 184534 (2010).

    Article  ADS  Google Scholar 

  42. Efetov, K. B. Phase-transition in granulated superconductors. Zh. Eksp. Teor. Fiz. 78, 2017–2032 (1980); Sov. Phys. JETP 51, 1015–1022 (1980).

    ADS  Google Scholar 

  43. Le Sueur, H. & Joyez, P. Room-temperature tunnel current amplifier and experimental setup for high resolution electronic spectroscopy in millikelvin scanning tunneling microscope experiments. Rev. Sci. Instrum. 77, 123701 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Finkel’stein, V. Kravtsov, M. Mézard, Z. Ovadyahu and N. Trivedi for valuable discussions. D.S. and M.O. acknowledge the Israeli Science Foundation and the Minerva Fund.

Author information

Authors and Affiliations

Authors

Contributions

B.S., T.D. and C.C. carried out the experiments. B.S., T.D., C.C. and D.S. analysed the data. M.O. and B.S. prepared the InO film samples. B.S., T.D., C.C., D.S., M.F. and L.I. wrote the paper. M.F. and L.I. carried out the theoretical analysis and the numerical simulations. M.S., C.C. and D.S. initiated this work. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Benjamin Sacépé.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 793 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacépé, B., Dubouchet, T., Chapelier, C. et al. Localization of preformed Cooper pairs in disordered superconductors. Nature Phys 7, 239–244 (2011). https://doi.org/10.1038/nphys1892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing