Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical virology

This article has been updated

Abstract

Viruses are nanosized, genome-filled protein containers with remarkable thermodynamic and mechanical properties. They form by spontaneous self-assembly inside the crowded, heterogeneous cytoplasm of infected cells. Self-assembly of viruses seems to obey the principles of thermodynamically reversible self-assembly but assembled shells (‘capsids’) strongly resist disassembly. Following assembly, some viral shells pass through a sequence of coordinated maturation steps that progressively strengthen the capsid. Nanoindentation measurements by atomic force microscopy enable tests of the strength of individual viral capsids. They show that concepts borrowed from macroscopic materials science are surprisingly relevant to viral shells. For example, viral shells exhibit ‘materials fatigue’ and the theory of thin-shell elasticity can account — in part — for atomic-force-microscopy-measured force–deformation curves. Viral shells have effective Young’s moduli ranging from that of polyethylene to that of plexiglas. Some of them can withstand internal osmotic pressures that are tens of atmospheres. Comparisons with thin-shell theory also shed light on nonlinear irreversible processes such as plastic deformation and failure. Finally, atomic force microscopy experiments can quantify the mechanical effects of genome encapsidation and capsid protein mutations on viral shells, providing virological insight and suggesting new biotechnological applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FEM analysis of shell deformation.
Figure 2: Orientation dependence of MVM.
Figure 3: Nanoindentation of phage λ.

Similar content being viewed by others

Change history

  • 02 November 2010

    In the HTML version of this Review originally published, the two figures in Box 2 were inadvertantly switched; this has now been corrected.

References

  1. Fischlechner, M. & Donath, E. Viruses as building blocks for materials and devices. Angew. Chem. Int. Ed. 46, 3184–3193 (2007).

    Article  Google Scholar 

  2. Singh, P., Gonzalez, M. J. & Manchester, M. Viruses and their uses in nanotechnology. Drug Dev. Res. 67, 23–41 (2006).

    Article  Google Scholar 

  3. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    ADS  Google Scholar 

  4. Tseng, R. J., Tsai, C. L., Ma, L. P. & Ouyang, J. Y. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nature Nanotechnol. 1, 72–77 (2006).

    Article  ADS  Google Scholar 

  5. Everts, M. et al. Covalently linked Au nanoparticles to a viral vector: Potential for combined photothermal and gene cancer therapy. Nano Lett. 6, 587–591 (2006).

    Article  ADS  Google Scholar 

  6. Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    Article  ADS  Google Scholar 

  7. Parato, K. A., Senger, D., Forsyth, P. A. J. & Bell, J. C. Recent progress in the battle between oncolytic viruses and tumours. Nature Rev. Cancer 5, 965–976 (2005).

    Article  Google Scholar 

  8. Kay, M. A., Glorioso, J. C. & Naldini, L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nature Med. 7, 33–40 (2001).

    Article  Google Scholar 

  9. Summers, W. C. Bacteriophage therapy. Annu. Rev. Microbiol. 55, 437–451 (2001).

    Article  Google Scholar 

  10. Stockley, P. & Twarock, R. (eds) Emerging Topics in Physical Virology (Imperial College, 2010).

  11. Bruinsma, R. F., Gelbart, W. M., Reguera, D., Rudnick, J. & Zandi, R. Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 90, 248101 (2003).

    Article  ADS  MATH  Google Scholar 

  12. Zlotnick, A. Theoretical aspects of virus capsid assembly. J. Mol. Recognit. 18, 479–490 (2005).

    Article  Google Scholar 

  13. Gelbart, W. M. & Knobler, C. M. Pressurized viruses. Science 323, 1682–1683 (2009).

    Article  ADS  Google Scholar 

  14. Roos, W. H., Ivanovska, I. L., Evilevitch, A. & Wuite, G. J. L. Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms. Cell. Mol. Life Sci. 64, 1484–1497 (2007).

    Article  Google Scholar 

  15. Sun, S. Y., Rao, V. B. & Rossmann, M. G. Genome packaging in viruses. Curr. Opin. Struct. Biol. 20, 114–120 (2010).

    Article  Google Scholar 

  16. Baumeister, W. & Steven, A. C. Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25, 624–631 (2000).

    Article  Google Scholar 

  17. Natarajan, P. et al. Exploring icosahedral virus structures with VIPER. Nature Rev. Microbiol. 3, 809–817 (2005).

    Article  Google Scholar 

  18. Fraenkel-Conrat, H. & Williams, R. C. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc. Natl Acad. Sci. USA 41, 690–698 (1955).

    Article  ADS  Google Scholar 

  19. Butler, P. J. G. & Klug, A. Assembly of a virus. Sci. Am. 239, 62–69 (1978).

    Google Scholar 

  20. Bancroft, J. B., Hills, G. J. & Markham, R. A study of self-assembly process in a small spherical virus—formation of organized structures from protein subunits in vitro. Virology 31, 354–379 (1967).

    Article  Google Scholar 

  21. Klug, A. The tobacco mosaic virus particle: Structure and assembly. Phil. Trans. R. Soc. Lond. B 354, 531–535 (1999).

    Google Scholar 

  22. Caspar, D. L. D. Assembly and stability of the tobacco mosaic virus particle. Adv. Protein Chem. 18, 37–121 (1963).

    Article  Google Scholar 

  23. Kegel, W. K. & van der Schoot, P. Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys. J. 91, 1501–1512 (2006).

    Article  Google Scholar 

  24. Bruinsma, R. F. Physics of RNA and viral assembly. Eur. Phys. J. E 19, 303–310 (2006).

    Article  Google Scholar 

  25. Tang, L. et al. The structure of Pariacoto virus reveals a dodecahedral cage of duplex RNA. Nature Struct. Biol. 8, 77–83 (2001).

    Article  Google Scholar 

  26. Johnson, J. M. et al. Regulating self-assembly of spherical oligomers. Nano Lett. 5, 765–770 (2005).

    Article  ADS  Google Scholar 

  27. Ceres, P. & Zlotnick, A. Weak protein–protein interactions are sufficient to drive assembly of hepatitis B virus capsids. Biochemistry 41, 11525–11531 (2002).

    Article  Google Scholar 

  28. Safran, S. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes; Frontiers in Physics (Westview Press, 2003).

    MATH  Google Scholar 

  29. Singh, S. & Zlotnick, A. Observed hysteresis of virus capsid disassembly is implicit in kinetic models of assembly. J. Biol. Chem. 278, 18249–18255 (2003).

    Article  Google Scholar 

  30. Morozov, A. Y., Bruinsma, R. F. & Rudnick, J. Assembly of viruses and the pseudo-law of mass action. J. Chem. Phys. 131, 155101 (2009).

    Article  ADS  Google Scholar 

  31. Endres, D. & Zlotnick, A. Model-based analysis of assembly kinetics for virus capsids or other spherical polymers. Biophys. J. 83, 1217–1230 (2002).

    Article  ADS  Google Scholar 

  32. Berthet-Colominas, C., Cuillel, M., Koch, M. H. J., Vachette, P. & Jacrot, B. Kinetic-study of the self-assembly of brome mosaic-virus capsid. Eur. Biophys. J. Biophys. Lett. 15, 159–168 (1987).

    Article  Google Scholar 

  33. Prevelige, P. E., Thomas, D. & King, J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys. J. 64, 824–835 (1993).

    Article  Google Scholar 

  34. Choi, Y. G., Dreher, T. W. & Rao, A. L. N. tRNA elements mediate the assembly of an icosahedral RNA virus. Proc. Natl Acad. Sci. USA 99, 655–660 (2002).

    Article  ADS  Google Scholar 

  35. Zlotnick, A., Aldrich, R., Johnson, J. M., Ceres, P. & Young, M. J. Mechanism of capsid assembly for an icosahedral plant virus. Virology 277, 450–456 (2000).

    Article  Google Scholar 

  36. Casini, G. L., Graham, D., Heine, D., Garcea, R. L. & Wu, D. T. In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 325, 320–327 (2004).

    Article  Google Scholar 

  37. Nguyen, T. T., Bruinsma, R. F. & Gelbart, W. M. Continuum theory of retroviral capsids. Phys. Rev. Lett. 96, 078102 (2006).

    Article  ADS  Google Scholar 

  38. Endres, D., Miyahara, M., Moisant, P. & Zlotnick, A. A reaction landscape identifies the intermediates critical for self-assembly of virus capsids and other polyhedral structures. Protein Sci. 14, 1518–1525 (2005).

    Article  Google Scholar 

  39. Zhang, T. Q. & Schwartz, R. Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics. Biophys. J. 90, 57–64 (2006).

    Article  ADS  Google Scholar 

  40. Hemberg, M., Yaliraki, S. N. & Barahona, M. Stochastic kinetics of viral capsid assembly based on detailed protein structures. Biophys. J. 90, 3029–3042 (2006).

    Article  Google Scholar 

  41. Hagan, M. F. & Chandler, D. Dynamic pathways for viral capsid assembly. Biophys. J. 91, 42–54 (2006).

    Article  ADS  Google Scholar 

  42. Hicks, S. D. & Henley, C. L. Irreversible growth model for virus capsid assembly. Phys. Rev. E 74, 031912 (2006).

    Article  ADS  Google Scholar 

  43. Nguyen, H. D., Reddy, V. S. & Brooks, C. L. Invariant polymorphism in virus capsid assembly. J. Am. Chem. Soc. 131, 2606–2614 (2009).

    Article  Google Scholar 

  44. Rapaport, D. C. Role of reversibility in viral capsid growth: A paradigm for self-assembly. Phys. Rev. Lett. 101, 186101 (2008).

    Article  ADS  Google Scholar 

  45. Berger, B., Shor, P. W., Tuckerkellogg, L. & King, J. Local rule-based theory of virus shell assembly. Proc. Natl Acad. Sci. USA 91, 7732–7736 (1994).

    Article  ADS  MATH  Google Scholar 

  46. Zandi, R., Reguera, D., Bruinsma, R. F., Gelbart, W. M. & Rudnick, J. Origin of icosahedral symmetry in viruses. Proc. Natl Acad. Sci. USA 101, 15556–15560 (2004).

    Article  ADS  Google Scholar 

  47. Chen, T., Zhang, Z. L. & Glotzer, S. C. A precise packing sequence for self-assembled convex structures. Proc. Natl Acad. Sci. USA 104, 717–722 (2007).

    Article  ADS  Google Scholar 

  48. Nguyen, T. T., Bruinsma, R. F. & Gelbart, W. M. Elasticity theory and shape transitions of viral shells. Phys. Rev. E 72, 051923 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  49. Moody, M. F. Geometry of phage head construction. J. Mol. Biol. 293, 401–433 (1999).

    Article  Google Scholar 

  50. Chen, T. & Glotzer, S. C. Simulation studies of a phenomenological model for elongated virus capsid formation. Phys. Rev. E 75, 051504 (2007).

    Article  ADS  Google Scholar 

  51. Luque, A., Zandi, R. & Reguera, D. Optimal architectures of elongated viruses. Proc. Natl Acad. Sci. USA 107, 5323–5328 (2010).

    Article  ADS  Google Scholar 

  52. Zhang, R. & Nguyen, T. T. Model of human immunodeficiency virus budding and self-assembly: Role of the cell membrane. Phys. Rev. E 78, 051903 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  53. Guerin, T. & Bruinsma, R. Theory of conformational transitions of viral shells. Phys. Rev. E 76, 061911 (2007).

    Article  ADS  Google Scholar 

  54. Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  ADS  Google Scholar 

  55. Tama, F. & Brooks, C. L. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J. Mol. Biol. 318, 733–747 (2002).

    Article  Google Scholar 

  56. Tama, F. & Brooks, C. L. Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. J. Mol. Biol. 345, 299–314 (2005).

    Article  Google Scholar 

  57. Widom, M., Lidmar, J. & Nelson, D. R. Soft modes near the buckling transition of icosahedral shells. Phys. Rev. E 76, 031911 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  58. Yang, Z., Bahar, I. & Widom, M. Vibrational dynamics of icosahedrally symmetric biomolecular assemblies compared with predictions based on continuum elasticity. Biophys. J. 96, 4438–4448 (2009).

    Article  ADS  Google Scholar 

  59. Anderson, T. F., Rappaport, C. & Muscatine, N. A. On the structure and osmotic properties of phage particles. Ann. Inst. Pasteur 84, 5–15 (1953).

    Google Scholar 

  60. Stephanidis, B., Adichtchev, S., Gouet, P., McPherson, A. & Mermet, A. Elastic properties of viruses. Biophys. J. 93, 1354–1359 (2007).

    Article  ADS  Google Scholar 

  61. Hartschuh, R. D. et al. How rigid are viruses. Phys. Rev. E 78, 021907 (2008).

    Article  ADS  Google Scholar 

  62. Smith, D. E. et al. The bacteriophage phi 29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  ADS  Google Scholar 

  63. Evilevitch, A., Lavelle, L., Knobler, C. M., Raspaud, E. & Gelbart, W. M. Osmotic pressure inhibition of DNA ejection from phage. Proc. Natl Acad. Sci. USA 100, 9292–9295 (2003).

    Article  ADS  Google Scholar 

  64. Lidmar, J., Mirny, L. & Nelson, D. R. Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68, 051910 (2003).

    Article  ADS  Google Scholar 

  65. Roos, W. H. et al. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc. Natl Acad. Sci. USA 106, 9673–9678 (2009).

    Article  ADS  Google Scholar 

  66. Liashkovich, I. et al. Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy. J. Cell Sci. 121, 2287–2292 (2008).

    Article  Google Scholar 

  67. Ivanovska, I. L. et al. Bacteriophage capsids: Tough nanoshells with complex elastic properties. Proc. Natl Acad. Sci. USA 101, 7600–7605 (2004).

    Article  ADS  Google Scholar 

  68. Carrasco, C. et al. DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl Acad. Sci. USA 103, 13706–13711 (2006).

    Article  ADS  Google Scholar 

  69. Zhao, Y., Ge, Z. B. & Fang, J. Y. Elastic modulus of viral nanotubes. Phys. Rev. E 78, 031914 (2008).

    ADS  Google Scholar 

  70. Gibbons, M. M. & Klug, W. S. Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007).

    Article  ADS  Google Scholar 

  71. Michel, J. P. et al. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl Acad. Sci. USA 103, 6184–6189 (2006).

    Article  ADS  Google Scholar 

  72. Gibbons, M. M. & Klug, W. S. Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys. J. 95, 3640–3649 (2008).

    Article  ADS  Google Scholar 

  73. Roos, W. H. et al. Squeezing protein shells: how continuum elastic models, molecular dynamics simulations and experiments coalesce at the nanoscale. Biophys. J. 99, 1175–1181 (2010).

    Article  ADS  Google Scholar 

  74. Uetrecht, C. et al. High-resolution mass spectrometry of viral assemblies: Molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl Acad. Sci. USA 105, 9216–9220 (2008).

    Article  ADS  Google Scholar 

  75. Carrasco, C., Castellanos, M., de Pablo, P. J. & Mateu, M. G. Manipulation of the mechanical properties of a virus by protein engineering. Proc. Natl Acad. Sci. USA 105, 4150–4155 (2008).

    Article  ADS  Google Scholar 

  76. Ivanovska, I., Wuite, G., Jonsson, B. & Evilevitch, A. Internal DNA pressure modifies stability of WT phage. Proc. Natl Acad. Sci. USA 104, 9603–9608 (2007).

    Article  ADS  Google Scholar 

  77. Klug, W. S. et al. Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006).

    Article  ADS  Google Scholar 

  78. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  Google Scholar 

  79. Roos, W. H. & Wuite, G. J. L. Nanoindentation studies reveal material properties of viruses. Adv. Mater. 21, 1187–1192 (2009).

    Article  Google Scholar 

  80. Arkhipov, A., Roos, W. H., Wuite, G. J. & Schulten, K. Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys. J. 97, 2061–2069 (2009).

    Article  ADS  Google Scholar 

  81. Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A. & Schulten, K. Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449 (2006).

    Article  Google Scholar 

  82. Arkhipov, A., Freddolino, P. L. & Schulten, K. Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 14, 1767–1777 (2006).

    Article  Google Scholar 

  83. Zink, M. & Grubmuller, H. Mechanical properties of the icosahedral shell of southern bean mosaic virus: A molecular dynamics study. Biophys. J. 96, 1350–1363 (2009).

    Article  ADS  Google Scholar 

  84. Cieplak, M. & Robbins, M. O. Nanoindentation of virus capsids in a molecular model. J. Chem. Phys. 132, 015101 (2010).

    Article  ADS  Google Scholar 

  85. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity 3rd edn (Elsevier, 1986).

    MATH  Google Scholar 

  86. Morozov, A., Rudnick, J., Bruinsma, R. & Klug, W. in Emerging Topics in Physical Virology (eds Stockley, P. & Twarock, R.) (Imperial College, 2010).

    Google Scholar 

  87. Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol. 79, 14967–14970 (2005).

    Article  Google Scholar 

  88. Kol, N. et al. Mechanical properties of murine leukemia virus particles: Effect of maturation. Biophys. J. 91, 767–774 (2006).

    Article  ADS  Google Scholar 

  89. Kol, N. et al. A stiffness switch in human immunodeficiency virus. Biophys. J. 92, 1777–1783 (2007).

    Article  ADS  Google Scholar 

  90. Newcomb, W. W. & Brown, J. C. Structure of the herpes-simplex virus capsid—effects of extraction with guanidine-hydrochloride and partial reconstitution of extracted capsids. J. Virol. 65, 613–620 (1991).

    Google Scholar 

  91. Li, Y. Y. et al. Control of virus assembly: HK97 ‘Whiffleball’ mutant capsids without pentons. J. Mol. Biol. 348, 167–182 (2005).

    Article  Google Scholar 

  92. Zlotnick, A. Viruses and the physics of soft condensed matter. Proc. Natl Acad. Sci. USA 101, 15549–15550 (2004).

    Article  ADS  Google Scholar 

  93. Caspar, D. L. D. & Klug, A. Physical principles in construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1–24 (1962).

    Article  Google Scholar 

  94. Johnson, J. E. & Speir, J. A. Quasi-equivalent viruses: A paradigm for protein assemblies. J. Mol. Biol. 269, 665–675 (1997).

    Article  Google Scholar 

  95. Crick, F. H. C. & Watson, J. D. Structure of small viruses. Nature 177, 473–475 (1956).

    Article  ADS  Google Scholar 

  96. Kasas, S. & Dietler, G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch. 456, 13–27 (2008).

    Article  Google Scholar 

  97. Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P. & Hansma, P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567 (1996).

    Article  Google Scholar 

  98. Sen, S., Subramanian, S. & Discher, D. E. Indentation and adhesive probing of a cell membrane with AFM: Theoretical model and experiments. Biophys. J. 89, 3203–3213 (2005).

    Article  Google Scholar 

  99. Vinckier, A., Dumortier, C., Engelborghs, Y. & Hellemans, L. Dynamical and mechanical study of immobilized microtubules with atomic force microscopy. J. Vac. Sci. Technol. B 14, 1427–1431 (1996).

    Article  Google Scholar 

  100. de Pablo, P. J., Schaap, I. A. T., MacKintosh, F. C. & Schmidt, C. F. Deformation and collapse of microtubules on the nanometer scale. Phys. Rev. Lett. 91, 098101 (2003).

    Article  ADS  Google Scholar 

  101. Kol, N. et al. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005).

    Article  ADS  Google Scholar 

  102. Kuznetsov, Y. G., Malkin, A. J., Lucas, R. W., Plomp, M. & McPherson, A. Imaging of viruses by atomic force microscopy. J. Gen. Virol. 82, 2025–2034 (2001).

    Article  Google Scholar 

  103. Baclayon, M., Wuite, G. J. L. & Roos, W. H. Imaging and manipulation of single viruses by atomic force microscopy. Soft Matterdoi:10.1039/b923992h (2010, in the press).

  104. Putman, C. A. J., Vanderwerf, K. O., Degrooth, B. G., Vanhulst, N. F. & Greve, J. Tapping mode atomic-force microscopy in liquid. Appl. Phys. Lett. 64, 2454–2456 (1994).

    Article  ADS  Google Scholar 

  105. Moreno-Herrero, F. et al. Scanning force microscopy jumping and tapping modes in liquids. Appl. Phys. Lett. 81, 2620–2622 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.J.L.W. would like to acknowledge support by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek in a CW-ECHO and a VICI grant, and support by the Stichting voor Fundamenteel Onderzoek der Materie under the ‘Physics of the genome’ research programme. R.B. would like to thank the NSF-DMR for support under Grant 0704274.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. H. Roos or G. J. L. Wuite.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roos, W., Bruinsma, R. & Wuite, G. Physical virology. Nature Phys 6, 733–743 (2010). https://doi.org/10.1038/nphys1797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing