Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A road to reality with topological superconductors

Topological matter can host low-energy quasiparticles, which, in a superconductor, are Majorana fermions described by a real wavefunction. The absence of complex phases provides protection for quantum computations based on topological superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Majorana metal in a computer simulation of a chiral p-wave superconductor.
Figure 2: Schematic of the thermal quantum Hall effect.

References

  1. Moore, W. J. Schrödinger, Life and Thought 215–216 (Cambridge Univ. Press, 1989).

    Book  Google Scholar 

  2. Dyson, F. Notices AMS 56, 212–223 (2009).

    Google Scholar 

  3. Bogoliubov, N. N. Sov. Phys. JETP 7, 41–46 (1958).

    Google Scholar 

  4. Volovik, G. E. JETP Lett. 70, 609–614 (1999).

    Article  ADS  Google Scholar 

  5. Senthil, T. & Fisher, M. P. A. Phys. Rev. B 61, 9690–9698 (2000).

    Article  ADS  Google Scholar 

  6. Read, N. & Green, D. Phys. Rev. B 61, 10267 (2000).

    Article  ADS  Google Scholar 

  7. Kitaev, A. Phys. Usp. 44, 131–136 (2001).

    Article  ADS  Google Scholar 

  8. Majorana, E. Nuovo Cim. 14, 171–184 (1937).

    Article  ADS  Google Scholar 

  9. Kallin, C. & Berlinksky, J. Rep. Prog. Phys. 79, 054502 (2016).

    Article  ADS  Google Scholar 

  10. Mackenzie, A. P. & Maeno, Y. Rev. Mod. Phys. 75, 657 (2003).

    Article  ADS  Google Scholar 

  11. Fu, L. & Kane, C. L. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  12. Sato, M., Takahashi, Y. & Fujimoto, S. Phys. Rev. Lett. 103, 020401 (2009).

    Article  ADS  Google Scholar 

  13. Sau, J. D., Lutchyn, R. M., Tewari, S. & das Sarma, S. Phys. Rev. Lett. 104, 040502 (2010).

    Article  ADS  Google Scholar 

  14. Alicea, J. Phys. Rev. B 81, 125318 (2010).

    Article  ADS  Google Scholar 

  15. Mourik, V. et al. Science 336, 1003–1007 (2012).

    Article  ADS  Google Scholar 

  16. Das, A. et al. Nature Phys. 8, 887–895 (2012).

    Article  ADS  Google Scholar 

  17. Deng, M. T. et al. Nano Lett. 12, 6414–6419 (2012).

    Article  ADS  Google Scholar 

  18. Albrecht, S. M. et al. Nature 531, 206–209 (2016).

    Article  ADS  Google Scholar 

  19. Lutchyn, R. M., Sau, J. D. & das Sarma, S. Phys. Rev. Lett. 105, 077001 (2010).

    Article  ADS  Google Scholar 

  20. Oreg, Y., Refael, G. & von Oppen, F. Phys. Rev. Lett. 105, 177002 (2010).

    Article  ADS  Google Scholar 

  21. Nadj-Perge, S. et al. Science 346, 602–607 (2014).

    Article  ADS  Google Scholar 

  22. Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Phys. Rev. B 84, 195442 (2011).

    Article  ADS  Google Scholar 

  23. Fu, L. & Kane, C. L. Phys. Rev. B 79, 161408(R) (2009).

    Article  ADS  Google Scholar 

  24. Knez, I., Du, R.-R. & Sullivan, G. Phys. Rev. Lett. 109, 186603 (2012).

    Article  ADS  Google Scholar 

  25. Veldhorst, M. et al. Nature Mater. 11, 417–421 (2012).

    Article  ADS  Google Scholar 

  26. Hart, S. et al. Nature Phys. 10, 638–643 (2014).

    Article  ADS  Google Scholar 

  27. Pribiag, V. S. et al. Nature Nanotech. 10, 593–597 (2015).

    Article  ADS  Google Scholar 

  28. Wimmer, M., Akhmerov, A. R., Medvedyeva, M. V., Tworzydlo, J. & Beenakker, C. W. J. Phys. Rev. Lett. 105, 046803 (2010).

    Article  ADS  Google Scholar 

  29. Medvedyeva, M. V., Tworzydlo, J. & Beenakker, C. W. J. Phys. Rev. B 81, 214203 (2010).

    Article  ADS  Google Scholar 

  30. Gnezdilov, N. V., van Heck, B., Diez, M., Hutasoit, J. A. & Beenakker, C. W. J. Phys. Rev. B 92, 121406(R) (2015).

    Article  ADS  Google Scholar 

  31. Hassler, F., Akhmerov, A. R. & Beenakker, C. W. J. New J. Phys. 13, 095004 (2011).

    Article  ADS  Google Scholar 

  32. Aasen, D. et al. Preprint at http://arxiv.org/abs/1511.05153 (2015).

  33. Larsen, T. W. et al. Phys. Rev. Lett. 115, 127001 (2015).

    Article  ADS  Google Scholar 

  34. de Lange, G. Phys. Rev. Lett. 115, 127002 (2015).

    Article  ADS  Google Scholar 

  35. Hasan, M. Z. & Kane, C. L. Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  36. Qi, X.-L. & Zhang, S.-C. Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  37. Hor, Y. S. et al. Phys. Rev. Lett. 104, 057001 (2010).

    Article  ADS  Google Scholar 

  38. Sasaki, S. et al. Phys. Rev. Lett. 107, 217001 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Our collaboration is supported by an ERC Synergy grant and by the NWO/OCW Nanofront consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlo Beenakker or Leo Kouwenhoven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beenakker, C., Kouwenhoven, L. A road to reality with topological superconductors. Nature Phys 12, 618–621 (2016). https://doi.org/10.1038/nphys3778

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing