Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cross-scale energy transport in space plasmas

Abstract

The solar wind is a supersonic magnetized plasma streaming far into the heliosphere. Although cooling as it flows, it is rapidly heated upon encountering planetary obstacles. At Earth, this interaction forms the magnetosphere and its sub-regions. The present paper focuses on particle heating across the boundary separating the shocked solar wind and magnetospheric plasma, which is driven by mechanisms operating on fluid, ion and electron scales. The cross-scale energy transport between these scales is a compelling and fundamental problem of plasma physics. Here, we present evidence of the energy transport between fluid and ion scales: free energy is provided in terms of a velocity shear generating fluid-scale Kelvin–Helmholtz instability. We show the unambiguous observation of an ion-scale magnetosonic wave packet, inside a Kelvin–Helmholtz vortex, with sufficient energy to account for observed ion heating. The present finding has universal consequences in understanding cross-scale energy transport, applicable to environments experiencing velocity shears during comparable plasma regimes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pictogram depicting the Cluster spacecraft configuration, wave-packet observations and the KH simulated data.
Figure 2: Overview plot showing time series data collected by the Cluster spacecraft for the boundary crossing on 6 June 2002.
Figure 3: Experimental and theoretical dispersion relations used for wave mode identification of RH, LH and FMW intervals.
Figure 4: Growth rates calculated for the FMW interval.
Figure 5: Cluster data showing the mixing region where cross-scale energy transport takes place.

Similar content being viewed by others

References

  1. Borovsky, J. E. & Cayton, T. E. Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit. J. Geophys. Res. 116, A06216 (2011).

    Article  ADS  Google Scholar 

  2. Hasegawa, H., Fujimoto, M., Maezawa, K., Saito, Y. & Mukai, T. Geotail observations of the dayside outer boundary region: interplanetary magnetic field control and dawn-dusk asymmetry. J. Geophys. Res. 108, 1163 (2003).

    Article  Google Scholar 

  3. Wing, S., Johnson, J. R., Newell, P. T. & Meng, C.-I. Dawn-dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. J. Geophys. Res. 110, A08205 (2005).

    ADS  Google Scholar 

  4. Dimmock, A. P., Nykyri, K., Karimabadi, H., Osmane, A. & Pulkkinen, T. I. A statistical study into the spatial distribution and dawn-dusk asymmetry of dayside magnetosheath ion temperatures as a function of upstream solar wind conditions. J. Geophys. Res. 120, 2767–2782 (2015).

    Article  Google Scholar 

  5. Fairfield, D. H. et al. Geotail observations of the Kelvin–Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields. J. Geophys. Res. 105, 21159–21174 (2000).

    Article  ADS  Google Scholar 

  6. Hasegawa, H. et al. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nature 430, 755–758 (2004).

    Article  ADS  Google Scholar 

  7. Nykyri, K. et al. Cluster observations of reconnection due to the Kelvin–Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys. 24, 2619–2643 (2006).

    Article  ADS  Google Scholar 

  8. Taylor, M. G. G. T. et al. Spatial distribution of rolled up Kelvin–Helmholtz vortices at Earth’s dayside and flank magnetopause. Ann. Geophys. 30, 1025–1035 (2012).

    Article  ADS  Google Scholar 

  9. Hwang, K.-J. et al. Kelvin–Helmholtz waves under southward interplanetary magnetic field. J. Geophys. Res. 116, A08210 (2011).

    Article  ADS  Google Scholar 

  10. Yan, G. Q. et al. Kelvin–Helmholtz vortices observed by THEMIS at the duskside of the magnetopause under southward interplanetary magnetic field. Geophys. Res. Lett. 41, 4427–4434 (2014).

    Article  ADS  Google Scholar 

  11. Kavosi, S. & Raeder, J. Ubiquity of Kelvin–Helmholtz waves at Earth’s magnetopause. Nat. Commun. 6, 7019 (2015).

    Article  ADS  Google Scholar 

  12. Pope, S. A. et al. Giant vortices lead to ion escape from Venus and re-distribution of plasma in the ionosphere. Geophys. Res. Lett. 36, L07202 (2009).

    Article  ADS  Google Scholar 

  13. Masters, A. et al. Cassini observations of a Kelvin–Helmholtz vortex in Saturn’s outer magnetosphere. J. Geophys. Res. 115, A07225 (2010).

    Article  ADS  Google Scholar 

  14. Boardsen, S. A. et al. Observations of Kelvin–Helmholtz waves along the dusk-side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby. Geophys. Res. Lett. 37, L12101 (2010).

    Article  ADS  Google Scholar 

  15. Sundberg, T. et al. MESSENGER orbital observations of large-amplitude Kelvin–Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216 (2012).

    ADS  Google Scholar 

  16. Ganguli, G., Slinker, S., Gavrishchaka, V. & Scales, W. Low frequency oscillations in a plasma with spatially variable field-aligned flow. Phys. Plasmas 9, 2321–2329 (2002).

    Article  ADS  Google Scholar 

  17. Nykyri, K. et al. Ion cyclotron waves in the high altitude cusp: CLUSTER observations at varying spacecraft separations. Geophys. Res. Lett. 30, 2263 (2003).

    Article  ADS  Google Scholar 

  18. Nykyri, K. & Otto, A. Influence of the Hall term on KH instability and reconnection inside KH vortices. Ann. Geophys. 22, 935–949 (2004).

    Article  ADS  Google Scholar 

  19. Nakamura, T. K., Hayashi, D., Fujimoto, M. & Shinohara, I. Decay of MHD-scale Kelvin–Helmholtz vortices mediated by parasitic electron dynamics. Phys. Rev. Lett. 92, 145001 (2004).

    Article  ADS  Google Scholar 

  20. Nykyri, K. & Otto, A. Plasma transport at the magnetospheric boundary due to reconnection in Kelvin–Helmholtz vortices. Geophys. Res. Lett. 28, 3565–3568 (2001).

    Article  ADS  Google Scholar 

  21. Hasegawa, H. et al. Kelvin–Helmholtz waves at the Earth’s magnetopause: multiscale development and associated reconnection. J. Geophys. Res. 114, A12207 (2009).

    Article  ADS  Google Scholar 

  22. Rossi, C. et al. Two-fluid numerical simulations of turbulence inside Kelvin–Helmholtz vortices: intermittency and reconnecting current sheets. Phys. Plasmas 22, 122303 (2015).

    Article  ADS  Google Scholar 

  23. Palermo, F., Faganello, M., Califano, F. & Pegoraro, F. Kelvin–Helmholtz vortices and secondary instabilities in super-magnetosonic regimes. Ann. Geophys. 29, 1169–1178 (2011).

    Article  ADS  Google Scholar 

  24. Zieger, B. et al. Jet front-driven mirror modes and shocklets in the near-Earth flow-braking region. Geophys. Res. Lett. 38, L22103 (2011).

    Article  ADS  Google Scholar 

  25. Hasegawa, H. et al. Single-spacecraft detection of rolled-up Kelvin–Helmholtz vortices at the flank magnetopause. J. Geophys. Res. 111, A09203 (2006).

    Article  ADS  Google Scholar 

  26. Stasiewicz, K. et al. Small scale Alfvénic structure in the Aurora. Space Sci. Rev. 92, 423–533 (2000).

    Article  ADS  Google Scholar 

  27. Stix, T. H. Waves in Plasmas (American Institute of Physics, 1992).

    Google Scholar 

  28. Krauss-Varban, D., Omidi, N. & Quest, K. B. Mode properties of low-frequency waves: kinetic theory versus Hall-MHD. J. Geophys. Res. 99, 5987–6009 (1994).

    Article  ADS  Google Scholar 

  29. Roennmark, K. Waves in homogeneous, anisotropic multicomponent plasmas (WHAMP) Tech. Rep. (Kiruna Geophysical Institute, 1982).

  30. Colpitts, C. A., Cattell, C. A., Kozyra, J. U. & Parrot, M. Satellite observations of banded vlf emissions in conjunction with energy-banded ions during very large geomagnetic storms. J. Geophys. Res. 117, A10211 (2012).

    Article  ADS  Google Scholar 

  31. Perraut, S. et al. A systematic study of ULF waves above F/H plus/ from GEOS 1 and 2 measurements and their relationships with proton ring distributions. J. Geophys. Res. 87, 6219–6236 (1982).

    Article  ADS  Google Scholar 

  32. Boardsen, S. A., Gallagher, D. L., Gurnett, D. A., Peterson, W. K. & Green, J. L. Funnel-shaped, low-frequency equatorial waves. J. Geophys. Res. 97, 14967–14976 (1992).

    Article  ADS  Google Scholar 

  33. Meredith, N. P., Horne, R. B. & Anderson, R. R. Survey of magnetosonic waves and proton ring distributions in the Earth’s inner magnetosphere. J. Geophys. Res. 113, A06213 (2008).

    Article  ADS  Google Scholar 

  34. Balikhin, M. A. et al. Observations of discrete harmonics emerging from equatorial noise. Nat. Commun. 6, 7703 (2015).

    Article  ADS  Google Scholar 

  35. Walker, S. N. et al. Experimental determination of the dispersion relation of magnetosonic waves. J. Geophys. Res. 9632–9650 (2015).

  36. Min, K. & Liu, K. Fast magnetosonic waves driven by shell velocity distributions. J. Geophys. Res. 120, 2739–2753 (2015).

    Article  Google Scholar 

  37. Terasawa, T. & Nambu, M. Ion heating and acceleration by magnetosonic waves via cyclotron subharmonic resonance. Geophys. Res. Lett. 16, 357–360 (1989).

    Article  ADS  Google Scholar 

  38. Peñano, J. R. & Ganguli, G. Ionospheric source for low-frequency broadband electromagnetic signatures. Phys. Rev. Lett. 83, 1343–1346 (1999).

    Article  ADS  Google Scholar 

  39. Peñano, J. R. & Ganguli, G. Generation of ELF electromagnetic waves in the ionosphere by localized transverse dc electric fields: subcyclotron frequency regime. J. Geophys. Res. 105, 7441–7458 (2000).

    Article  ADS  Google Scholar 

  40. Peñano, J. R. & Ganguli, G. Correction to “Generation of ELF electromagnetic waves in the ionosphere by localized transverse dc electric fields: subcyclotron frequency regime” by J. R. Peñano and G. Ganguli. J. Geophys. Res. 107, SIA 7-1–SIA 7-2 (2002).

    Article  Google Scholar 

  41. Tejero, E. M. et al. Spontaneous electromagnetic emission from a strongly localized plasma flow. Phys. Rev. Lett. 106, 185001 (2011).

    Article  ADS  Google Scholar 

  42. Ganguli, G., Tejero, E., Crabtree, C., Amatucci, W. & Rudakov, L. Generation of electromagnetic waves in the very low frequency band by velocity gradient. Phys. Plasmas 21, 012107 (2014).

    Article  ADS  Google Scholar 

  43. Hunana, P. et al. Polarization and compressibility of oblique kinetic Alfvén waves. Astrophys. J. 766, 93 (2013).

    Article  ADS  Google Scholar 

  44. Johnson, J. R., Cheng, C. Z. & Song, P. Signatures of mode conversion and kinetic Alfvén waves at the magnetopause. Geophys. Res. Lett. 28, 227–230 (2001).

    Article  ADS  Google Scholar 

  45. Chaston, C. C. et al. Mode conversion and anomalous transport in Kelvin–Helmholtz vortices and kinetic Alfvén waves at the Earth’s magnetopause. Phys. Rev. Lett. 99, 175004 (2007).

    Article  ADS  Google Scholar 

  46. Johnson, J. R. & Cheng, C. Z. Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 4421–4424 (2001).

    Article  ADS  Google Scholar 

  47. Nykyri, K. Impact of MHD shock physics on magnetosheath asymmetry and Kelvin–Helmholtz instability. J. Geophys. Res. 118, 5068–5081 (2013).

    Article  Google Scholar 

  48. Nykyri, K. & Dimmock, A. Statistical study of the {ULF} pc4 pc5 range fluctuations in the vicinity of earths magnetopause and correlation with the low latitude boundary layer thickness. Adv. Space Res. 257–267 (2016).

  49. Yao, Y., Chaston, C. C., Glassmeier, K.-H. & Angelopoulos, V. Electromagnetic waves on ion gyro-radii scales across the magnetopause. Geophys. Res. Lett. 38, L09102 (2011).

    ADS  Google Scholar 

  50. Foullon, C., Verwichte, E., Nakariakov, V. M., Nykyri, K. & Farrugia, C. J. Magnetic Kelvin–Helmholtz Instability at the Sun. Astrophys. J. Lett. 729, L8 (2011).

    Article  ADS  Google Scholar 

  51. Horton, W., Perez, J. C., Carter, T. & Bengtson, R. Vorticity probes and the characterization of vortices in the Kelvin–Helmholtz instability in the large plasma device experiment. Phys. Plasmas 12, 022303 (2005).

    Article  ADS  Google Scholar 

  52. Ongena, J., Koch, R., Wolf, R. & Zohm, H. Magnetic-confinement fusion. Nat. Phys. 12, 398–410 (2016).

    Article  Google Scholar 

  53. Paschmann, G. & Daly, P. W. Analysis Methods for Multi-Spacecraft Data ISSI Scientific Reports Series SR-001, ESA/ISSI, Vol. 1. ISBN 1608-280X, 1998 1 (ISSI Scientific Reports Series, ESA Publications Division, 1998).

  54. Otto, A. & Fairfield, D. H. Kelvin–Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. J. Geophys. Res. 105, 21175–21190 (2000).

    Article  ADS  Google Scholar 

  55. Balikhin, M. A. et al. Experimental determination of the dispersion of waves observed upstream of a quasi-perpendicular shock. Geophys. Res. Lett. 24, 787–790 (1997).

    Article  ADS  Google Scholar 

  56. Dimmock, A. P., Balikhin, M. A., Walker, S. N. & Pope, S. A. Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock. Ann. Geophys. 31, 1387–1395 (2013).

    Article  ADS  Google Scholar 

  57. Sonnerup, B. U. O. & Cahill, L. J. Jr Magnetopause structure and attitude from explorer 12 observations. J. Geophys. Res. 72, 171–173 (1967).

    Article  ADS  Google Scholar 

  58. Laakso, H. et al. Cluster active archive: overview. Astrophys. Space Sci. Proc. 11, 3–37 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of T.W.M. and K.N. was supported by National Science Foundation Grants 0847120 and 1502774. The work of A.P.D. was supported by the Academy of Finland Grants 288472 and 267073/2013. The authors would like to thank M. A. Balikhin for valuable discussion. The authors would like to acknowledge the work performed by the Cluster FGM, EFW, CIS and PEACE instrument teams as well as the Cluster Science Archive and the Cluster Active Archive for the use of their data.

Author information

Authors and Affiliations

Authors

Contributions

K.N. provided the idea, initiated the study and guided the work of graduate student T.W.M., who identified the KH event from Cluster data, screened the data for plasma mixing regions and higher frequency plasma waves, analysed wave properties, created 2.5D MHD simulations of the event and prepared figures for the manuscript. A.P.D. computed the experimental dispersion relation using the two-spacecraft method. All authors contributed to the writing and editing of the manuscript and discussed the methods, results and scientific implications at all stages. All authors discussed the text and commented on the manuscript.

Corresponding author

Correspondence to T. W. Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, T., Nykyri, K. & Dimmock, A. Cross-scale energy transport in space plasmas. Nature Phys 12, 1164–1169 (2016). https://doi.org/10.1038/nphys3869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3869

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing