Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liquid explosions induced by X-ray laser pulses

Abstract

Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure or shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inducing liquid microexplosions with ultraintense X-ray pulses.
Figure 2: Drop explosions induced by XFEL pulses.
Figure 3: Quantitative dynamics of drop explosions.
Figure 4: Jet explosions induced by XFEL pulses.
Figure 5: A model for the vapour-driven growth of the gap.
Figure 6: The propagation of XFEL-induced shock waves in jets.

Similar content being viewed by others

References

  1. Burrows, A. Supernova explosions in the Universe. Nature 403, 727–733 (2000).

    Article  ADS  Google Scholar 

  2. Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003).

    Article  Google Scholar 

  3. Vailionis, A. et al. Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nature Commun. 2, 445 (2011).

    Article  ADS  Google Scholar 

  4. Sokolowski-Tinten, K. et al. Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224–227 (1998).

    Article  ADS  Google Scholar 

  5. Milathianaki, D. et al. Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342, 220–223 (2013).

    Article  ADS  Google Scholar 

  6. Schaffer, C. B., Nishimura, N., Glezer, E. N., Kim, A. M. T. & Mazur, E. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Opt. Express 10, 196–203 (2002).

    Article  ADS  Google Scholar 

  7. Vogel, A., Busch, S. & Parlitz, U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100, 148–165 (1996).

    Article  ADS  Google Scholar 

  8. Vogel, A., Linz, N., Freidank, S. & Paltauf, G. Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. Phys. Rev. Lett. 100, 038102 (2008).

    Article  ADS  Google Scholar 

  9. Charvat, A., Stasicki, B. & Abel, B. Product screening of fast reactions in IR-laser-heated liquid water filaments in a vacuum by mass spectrometry. J. Phys. Chem. A 110, 3297–3306 (2006).

    Article  Google Scholar 

  10. Zhang, J. Z., Lam, J. K., Wood, C. F., Chu, B. T. & Chang, R. K. Explosive vaporization of a large transparent droplet irradiated by a high-intensity laser. Appl. Opt. 26, 4731–4737 (1987).

    Article  ADS  Google Scholar 

  11. Lindinger, A. et al. Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses. Appl. Opt. 43, 5263–5269 (2004).

    Article  ADS  Google Scholar 

  12. Klein, A. L. et al. Drop shaping by laser-pulse impact. Phys. Rev. Appl. 3, 044018 (2015).

    Article  ADS  Google Scholar 

  13. Franjic, K. & Miller, R. J. D. Vibrationally excited ultrafast thermodynamic phase transitions at the water/air interface. Phys. Chem. Chem. Phys. 12, 5225–5239 (2010).

    Article  Google Scholar 

  14. Strycker, B. et al. Femtosecond-laser-induced shockwaves in water generated at an air-water interface. Opt. Express 21, 23772–23784 (2013).

    Article  ADS  Google Scholar 

  15. Ando, K., Liu, A. Q. & Ohl, C. D. Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett. 109, 044501 (2012).

    Article  ADS  Google Scholar 

  16. Vogel, A., Noack, J., Huttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005).

    Article  ADS  Google Scholar 

  17. Kurz, H. G. et al. High-order-harmonic generation from dense water microdroplets. Phys. Rev. A 87, 063811 (2013).

    Article  ADS  Google Scholar 

  18. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  19. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photon. 6, 540–544 (2012).

    Article  ADS  Google Scholar 

  20. Vinko, S. M. et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59–62 (2012).

    Article  ADS  Google Scholar 

  21. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    Article  ADS  Google Scholar 

  22. Boutet, S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012).

    Article  ADS  Google Scholar 

  23. Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).

    Article  ADS  Google Scholar 

  24. Liang, M. et al. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015).

    Article  Google Scholar 

  25. Boutet, S. & Williams, G. J. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New J. Phys. 12, 035024 (2010).

    Article  ADS  Google Scholar 

  26. Seltzer, S. M. Calculation of photon mass energy-transfer and mass energy-absorption coefficients. Radiat. Res. 136, 147–170 (1993).

    Article  ADS  Google Scholar 

  27. Neppl, S. et al. Attosecond time-resolved photoemission from core and valence states of magnesium. Phys. Rev. Lett. 109, 087401 (2012).

    Article  ADS  Google Scholar 

  28. Hau-Riege, S. P. Nonequilibrium electron dynamics in materials driven by high-intensity X-ray pulses. Phys. Rev. E 87, 053102 (2013).

    Article  ADS  Google Scholar 

  29. Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

    Article  ADS  Google Scholar 

  30. Vodopyanov, K. L. Saturation studies of H2O and HDO near 3400 cm−1 using intense picosecond laser pulses. J. Chem. Phys. 94, 5389–5393 (1991).

    Article  ADS  Google Scholar 

  31. Sanishvili, R. et al. Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc. Natl Acad. Sci. USA 108, 6127–6132 (2011).

    Article  ADS  Google Scholar 

  32. Sigrist, M. W. Laser generation of acoustic waves in liquids and gases. J. Appl. Phys. 60, R83–R121 (1986).

    Article  ADS  Google Scholar 

  33. Kudryashov, S. I., Lyon, K. & Allen, S. D. Photoacoustic study of relaxation dynamics in multibubble systems in laser-superheated water. Phys. Rev. E 73, 055301(R) (2006).

    Article  ADS  Google Scholar 

  34. Zel’dovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena Vol. 1–2 (Academic, 1968).

    Google Scholar 

  35. Rice, M. H. & Walsh, J. M. Equation of state of water to 250 kilobars. J. Chem. Phys. 26, 824–830 (1957).

    Article  ADS  Google Scholar 

  36. Nagayama, K., Mori, Y., Shimada, K. & Nakahara, M. Shock Hugoniot compression curve for water up to 1 GPa by using a compressed gas gun. J. Appl. Phys. 91, 476–482 (2002).

    Article  ADS  Google Scholar 

  37. Gurtman, G. A., Kirsch, J. W. & Hastings, C. R. Analytical equation of state for water compressed to 300 kbar. J. Appl. Phys. 42, 851–857 (1971).

    Article  ADS  Google Scholar 

  38. Ranz, W. E. Some experiments on the dynamics of liquid films. J. Appl. Phys. 30, 1950–1955 (1959).

    Article  ADS  Google Scholar 

  39. Clanet, C. Waterbells and liquid sheets. Annu. Rev. Fluid Mech. 39, 469–496 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  40. Altarelli, M. & Mancuso, A. P. Structural biology at the European X-ray free-electron laser facility. Phil. Trans. R. Soc. B 369, 20130311 (2014).

    Article  Google Scholar 

  41. Schoenlein, R. et al. New Science Opportunities Enabled By LCLS-II X-ray Lasers SLAC Report SLAC-R-1053 (SLAC National Accelerator Laboratory, 2015).

    Google Scholar 

  42. Pishchalnikov, Y. A. et al. Cavitation selectively reduces the negative-pressure phase of lithotripter shock pulses. Acoust. Res. Lett. Online 6, 280–286 (2005).

    Article  Google Scholar 

  43. Lown, D., Thirsk, H. & Wynne-Jones, L. Effect of pressure on ionization equilibria in water at 25 °C. Trans. Faraday Soc. 64, 2073–2080 (1968).

    Article  Google Scholar 

  44. Weber, G. & Drickamer, H. G. The effect of high pressure upon proteins and other biomolecules. Q. Rev. Biophys. 16, 89–112 (1983).

    Article  Google Scholar 

  45. Decker, F. et al. A demonstration of multi-bunch operation in the LCL. In Proc. 32nd Int. Free Electron Laser Conf. (FEL 2010) 467–470 (JACoW, 2010).

  46. Marinelli, A. et al. High-intensity double-pulse X-ray free-electron laser. Nature Commun. 6, 6369 (2015).

    Article  ADS  Google Scholar 

  47. Alonso-Mori, R. et al. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 508–513 (2015).

    Article  Google Scholar 

  48. DePonte, D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 41, 195505 (2008).

    Article  ADS  Google Scholar 

  49. Stan, C. A. et al. Image Data Analyzed in “Liquid Explosions Induced by X-ray Laser Pulses” (Stanford Digital Repository, 2016); http://purl.stanford.edu/wv179nv3100

    Google Scholar 

Download references

Acknowledgements

The work was primarily supported by the in-house research programme at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, and by the US Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract no. DE-AC02-76SF00515. S.Botha, K.N., I.S. and R.L.S. acknowledge support from the Max Planck Society. The development of the optical imaging set-up was partially supported by the Human Frontiers Science Project Award RPG005/2011, and by the SLAC Laboratory Directed Research and Development Program. We thank R. Curtis for his assistance in assembling the experiment and S. Hau-Riege for discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.A.S. and S.Boutet conceived the experiment; C.A.S., D.M., R.G.S., T.A.M., M.M., G.J.W., J.E.K., M.J.H., S.A.H.G., J.S.R., K.L.G., S.Botha, K.N., I.S., R.L.S. and S.Boutet designed, developed and built the experimental apparatus; C.A.S., H.L., M.M., G.J.W., J.E.K., M.L., A.L.A., P.R.W., S.Botha, K.N., I.S., R.L.S. and S.Boutet carried out the experiments; C.A.S., H.L. and T.J.L. processed the data; C.A.S., D.M. and H.A.S. interpreted the data; C.A.S. developed the fluid dynamics models; C.A.S., D.M., I.S., R.L.S., H.A.S. and S.Boutet wrote the paper.

Corresponding author

Correspondence to Claudiu A. Stan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3678 kb)

Supplementary Movie 1

Supplementary Movie (MOV 6920 kb)

Supplementary Movie 2

Supplementary Movie (MOV 14859 kb)

Supplementary Movie 3

Supplementary Movie (MOV 9532 kb)

Supplementary Movie 4

Supplementary Movie (MOV 7258 kb)

Supplementary Movie 5

Supplementary Movie (MOV 7550 kb)

Supplementary Movie 6

Supplementary Movie (MOV 9943 kb)

Supplementary Movie 7

Supplementary Movie (MOV 6638 kb)

Supplementary Movie 8

Supplementary Movie (MOV 6775 kb)

Supplementary Movie 9

Supplementary Movie (MOV 5341 kb)

Supplementary Movie 10

Supplementary Movie (MOV 6733 kb)

Supplementary Movie 11

Supplementary Movie (MOV 3133 kb)

Supplementary Movie 12

Supplementary Movie (MOV 4268 kb)

Supplementary Movie 13

Supplementary Movie (MOV 2714 kb)

Supplementary Movie 14

Supplementary Movie (MOV 1284 kb)

Supplementary Movie 15

Supplementary Movie (MOV 3757 kb)

Supplementary Movie 16

Supplementary Movie (MOV 3764 kb)

Supplementary Movie 17

Supplementary Movie (MOV 2493 kb)

Supplementary Movie 18

Supplementary Movie (MOV 2968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stan, C., Milathianaki, D., Laksmono, H. et al. Liquid explosions induced by X-ray laser pulses. Nature Phys 12, 966–971 (2016). https://doi.org/10.1038/nphys3779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing