Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectricity in the multiferroic hexagonal manganites

Abstract

Since their discovery in 1963 the hexagonal manganites have consolidated their role as exotic ferroelectrics with astonishing functionalities. Their introduction as room-temperature device ferroelectrics was followed by observations of giant flexoelectricity, multiferroicity with magnetoelectric domain and domain-wall coupling, protected vortex domain structures, topological domain-scaling behaviour and domain walls with tunable conductance and magnetism. Even after half a century, however, the emergence of the ferroelectric state has remained the subject of fierce debate. We resolve the interplay of electric polarization, topological trimerization and temperature by direct access to the polarization for temperatures up to 1,400 K. Nonlinear optical experiments and piezoresponse force microscopy, complemented by Monte Carlo simulations, reveal a single phase transition with ferroelectricity determined by topology rather than electrostatics. Fundamental properties of the hexagonal manganites, including an explanation for the two-phase-transition controversy as a finite-size scaling effect, are derived from this and highlight why improper ferroelectrics are an inherent source of novel functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct probing of the spontaneous polarization by optical SHG.
Figure 2: Effect of annealing on the ferroelectric domain structure.
Figure 3: Monte Carlo simulation of the ferroelectric phase transition in YMnO3.
Figure 4: Emergence of ferroelectric domains in YMnO3.

Similar content being viewed by others

References

  1. Gibbs, A. S., Knight, K. S. & Lightfoot, P. High-temperature phase transitions of hexagonal YMnO3 . Phys. Rev. B 83, 094111 (2011).

    Article  ADS  Google Scholar 

  2. Katsufuji, T. et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001).

    Article  ADS  Google Scholar 

  3. Kim, J., Cho, K. C., Koo, Y. M., Hong, K. P. & Shin, N. YO hybridization in the ferroelectric transition of YMnO3 . Appl. Phys. Lett. 95, 132901 (2009).

    Article  ADS  Google Scholar 

  4. Nénert, G. et al. Experimental evidence for an intermediate phase in the multiferroic YMnO3 . J. Phys. Condens. Matter 19, 466212 (2007).

    Article  Google Scholar 

  5. Tyson, T. A. et al. Measurements and ab initio molecular dynamics simulations of the high temperature ferroelectric transition in hexagonal RMnO3 . J. Appl. Phys. 110, 084116 (2011).

    Article  ADS  Google Scholar 

  6. Thomson, R. I., Chatterji, T., Howard, C. J., Palstra, T. T. M. & Carpenter, M. A. Elastic anomalies associated with structural and magnetic phase transitions in single crystal hexagonal YMnO3 . J. Phys. Condens. Matter 26, 045901 (2014).

    Article  Google Scholar 

  7. Jeong, I.-K., Hur, N. & Proffen, T. High-temperature structural evolution of hexagonal multiferroic YMnO3 and YbMnO3 . J. Appl. Crystallogr. 40, 730–734 (2007).

    Article  Google Scholar 

  8. Selbach, S. M. et al. Crystal structure, chemical expansion and phase stability of HoMnO3 at high temperature. J. Solid State Chem. 196, 528–535 (2012).

    Article  ADS  Google Scholar 

  9. Ismailzade, I. G. & Kizhaev, S. A. Determination of the Curie point of the ferroelectric YMnO3 and YbMnO3 . Sov. Phys. Solid State 7, 298–301 (1965).

    Google Scholar 

  10. Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3 . Nature Mater. 3, 164–170 (2004).

    Article  ADS  Google Scholar 

  11. Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

    Article  ADS  Google Scholar 

  12. Artyukhin, S., Delaney, K. T., Spaldin, N. A. & Mostovoy, M. Landau theory of topological defects in multiferroic hexagonal manganites. Nature Mater. 13, 42–49 (2014).

    Article  ADS  Google Scholar 

  13. Cano, A. Hidden order in hexagonal RMnO3 multiferroics (R = Dy–Lu, In, Y, and Sc). Phys. Rev. B 89, 214107 (2014).

    Article  ADS  Google Scholar 

  14. Fujimura, N. T., Ishida, T. T., Yoshimura, T. & Ito, T. Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices. Appl. Phys. Lett. 69, 1011–1013 (1996).

    Article  ADS  Google Scholar 

  15. Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011).

    Article  ADS  Google Scholar 

  16. Fiebig, M., Lottermoser, T., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  ADS  Google Scholar 

  17. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  ADS  Google Scholar 

  18. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3 . Nature Mater. 9, 253–258 (2010).

    Article  ADS  Google Scholar 

  19. Jungk, T., Hoffmann, Á., Fiebig, M. & Soergel, E. Electrostatic topology of ferroelectric domains in YMnO3 . Appl. Phys. Lett. 97, 012904 (2010).

    Article  ADS  Google Scholar 

  20. Griffin, S. M. et al. Scaling behavior and beyond equilibrium in the hexagonal manganites. Phys. Rev. X 2, 041022 (2012).

    Google Scholar 

  21. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nature Mater. 11, 284–288 (2012).

    Article  ADS  Google Scholar 

  22. Geng, Y., Lee, N., Choi, Y. J., Cheong, S.-W. & Wu, W. Collective magnetism at multiferroic vortex domain walls. Nano Lett. 12, 6055–6059 (2012).

    Article  ADS  Google Scholar 

  23. Denev, S. A., Lummen, T. T. A., Barnes, E., Kumar, A. & Gopalan, V. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).

    Article  Google Scholar 

  24. Leo, N. et al. Independent ferroelectric contributions and rare-earth-induced polarization reversal in multiferroic TbMn2O5 . Phys. Rev. B 85, 094408 (2012).

    Article  ADS  Google Scholar 

  25. José, J. V., Kadanoff, L. P., Kirkpatrick, S. & Nelson, D. R. Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217–1241 (1977).

    Article  ADS  Google Scholar 

  26. Lin, S.-Z. et al. Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nature Phys. 10, 970–977 (2014).

    Article  ADS  Google Scholar 

  27. Lou, J., Sandvik, A. W. & Balents, L. Emergence of U(1) symmetry in the 3D XY model with Z q anisotropy. Phys. Rev. Lett. 99, 207203 (2007).

    Article  ADS  Google Scholar 

  28. Chae, S. C. et al. Direct Observation of the proliferation of ferroelectric loop domains and vortex–antivortex pairs. Phys. Rev. Lett. 108, 167603 (2012).

    Article  ADS  Google Scholar 

  29. Chae, S. C. et al. Self-organization, condensation, and annihilation of topological vortices and antivortices in a multiferroic. Proc. Natl Acad. Sci. USA 107, 21366–21370 (2010).

    Article  ADS  Google Scholar 

  30. Fiebig, M., Fröhlich, D., Lottermoser, Th. & Maat, M. Probing of ferroelectric surface and bulk domains in ferroelectric RMnO3 (R = Y, Ho) by second harmonic generation. Phys. Rev. B 66, 144102 (2002).

    Article  ADS  Google Scholar 

  31. Kamata, K., Nakajima, T. & Nakamura, T. Thermogravimetric study of rare-earth manganites AMnO3 (A = Sm, Dy, Y, Er, Yb) at 1,200 °C. Mater. Res. Bull. 14, 1007–1012 (1979).

    Article  Google Scholar 

  32. Soergel, E. Piezoresponse force microscopy. J. Phys. D 44, 464003 (2011).

    Article  ADS  Google Scholar 

  33. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  ADS  Google Scholar 

  34. Wolff, U. Collective Monte Carlo updating in a high precision study of the xy model. Nucl. Phys. B 322, 759–774 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ETH Research Grant No. ETH-06 12-2. The authors thank N. A. Spaldin for enlightening discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.L. performed the SHG and PFM experiments, T.L. performed the Monte Carlo simulations and S.M. performed the pyrocurrent measurements. S.M.S. performed the dilatometry measurements. A.C. contributed to the discussion and analysis. M.F. supervised the work.

Corresponding author

Correspondence to Martin Lilienblum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lilienblum, M., Lottermoser, T., Manz, S. et al. Ferroelectricity in the multiferroic hexagonal manganites. Nature Phys 11, 1070–1073 (2015). https://doi.org/10.1038/nphys3468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing