Perspectives

Filter By:

  • Although topological photonics has been an active field of research for some time, most studies still focus on the linear optical regime. This Perspective summarizes recent investigations into the nonlinear properties of discrete topological photonic systems.

    • Alexander Szameit
    • Mikael C. Rechtsman
    Perspective
  • Encouraging students to take ownership of their learning can improve their outcomes. This Perspective discusses ways to achieve this in the context of physics education and how digital technology can help Gen Z students in particular.

    • Nam-Hwa Kang
    Perspective
  • Quantum computers promise to efficiently predict the structure and behaviour of molecules. This Perspective explores how this could overcome existing challenges in computational drug discovery.

    • Raffaele Santagati
    • Alan Aspuru-Guzik
    • Clemens Utschig-Utschig
    Perspective
  • Majorana zero modes are emergent excitations in topological superconductors. This Perspective introduces the physics of these modes, recaps the recent history of the experimental search for them and discusses the future prognosis for success.

    • Sankar Das Sarma
    Perspective
  • Recent experiments utilizing strain have shed light on the role of electronic nematicity in determining the properties of unconventional superconductors. This Perspective reviews these developments and discusses open questions.

    • Anna E. Böhmer
    • Jiun-Haw Chu
    • Ming Yi
    Perspective
  • Multiple scattering of light in complex and disordered media scrambles optical information. This Perspective showcases how this often detrimental physical mixing can be exploited to extract and process information for optical imaging and computing.

    • Sylvain Gigan
    Perspective
  • It is not immediately obvious whether photons retain the information they carry when they traverse a disordered or multimodal medium. This Perspective discusses the extent to which the quantum properties of light can be preserved and controlled.

    • Ohad Lib
    • Yaron Bromberg
    Perspective
  • High-resolution imaging methods have been instrumental in advancing our understanding of the structure of materials. To move microscopy and tomography methods forwards, approaches to reassess macroscopic concepts such as symmetry are needed.

    • Sergei V. Kalinin
    • Ayana Ghosh
    • Maxim Ziatdinov
    Perspective
  • Drawing on notions from non-equilibrium physics, an interdisciplinary team of economists and scientists describe a framework for understanding the factors that underpin economic resilience, and identify the basic tools for implementing it.

    • William Hynes
    • Benjamin D. Trump
    • Igor Linkov
    Perspective
  • Superconductivity and ordered states formed by interactions—both of which could be unconventional—have recently been observed in a family of kagome materials.

    • Titus Neupert
    • M. Michael Denner
    • M. Zahid Hasan
    Perspective
  • The interaction between light and the crystal lattice of a quantum material can modify its properties. Utilizing nonlinear interactions allows this to be done in a controlled way to design specific non-equilibrium functionalities.

    • Ankit S. Disa
    • Tobia F. Nova
    • Andrea Cavalleri
    Perspective
  • Network representations of complex systems are limited to pairwise interactions, but real-world systems often involve higher-order interactions. This Perspective looks at the new physics emerging from attempts to characterize these interactions.

    • Federico Battiston
    • Enrico Amico
    • Giovanni Petri
    Perspective
  • The interplay of topological properties and non-Hermitian symmetry breaking has been implemented for a range of classical-wave systems. Recent advances, challenges and opportunities are reviewed across the different physical platforms.

    • Corentin Coulais
    • Romain Fleury
    • Jasper van Wezel
    Perspective
  • Hybrid devices of superconductors and semiconductor nanowires may be topological and host majorana. This Perspective summarizes the current situation of the field, and highlights the developments in materials science required to make progress.

    • S. M. Frolov
    • M. J. Manfra
    • J. D. Sau
    Perspective
  • This Perspective argues that an approach called extreme value theory is appropriate for understanding the so-called tail risk of epidemic outbreaks, in particular by demonstrating that the distribution of fatalities due to epidemic outbreaks over the past 2500 years is fat-tailed and dominated by extreme events.

    • Pasquale Cirillo
    • Nassim Nicholas Taleb
    Perspective
  • The identification of superconductivity and strong interactions in twisted bilayer 2D materials prompted many questions about the interplay of these phenomena. This Perspective presents the status of the field and the urgent issues for future study.

    • Leon Balents
    • Cory R. Dean
    • Andrea F. Young
    Perspective
  • The Future Circular Colliders are proposed as a future step after the Large Hadron Collider has stopped running. The first stage foresees collision of electron–positron pairs before a machine upgrade to allow proton–proton operation.

    • Michael Benedikt
    • Alain Blondel
    • Frank Zimmermann
    PerspectiveOpen Access