Articles in 2022

Filter By:

Article Type
Year
  • Generalized measurements that do not correspond to conventional basis projections of the quantum wavefunction are a part of several important protocols in quantum information. These measurements can be certifiably performed on higher-dimensional systems using optical fibre technology.

    • Daniel Martínez
    • Esteban S. Gómez
    • Gustavo Lima
    Article
  • The intermediate states in photo-excited phase transitions are expected to be inhomogeneous. However, ultrafast X-ray imaging shows the early part of the metal–insulator transition in VO2 is homogeneous but then becomes heterogeneous.

    • Allan S. Johnson
    • Daniel Perez-Salinas
    • Simon E. Wall
    ArticleOpen Access
  • In bosonic systems, the presence of particles in a given quantum level can enhance the transition rates into that state, an effect known as bosonic stimulation. Bosonic enhancement of light scattering has now been observed in an ultracold Bose gas.

    • Yu-Kun Lu
    • Yair Margalit
    • Wolfgang Ketterle
    Article
  • The Earth’s bow shock results from the interaction of the solar wind with the terrestrial magnetic field. With global numerical simulations and spacecraft observations, the transmission of fast magnetosonic waves through the bow shock is revealed.

    • L. Turc
    • O. W. Roberts
    • U. Ganse
    ArticleOpen Access
  • Multidimensional coherent spectroscopy measurements in iron-based superconductors demonstrate how the coupling between a superconductor and strong light pulses can drive the transition into a non-equilibrium superconducting state with distinct collective modes.

    • L. Luo
    • M. Mootz
    • J. Wang
    ArticleOpen Access
  • Attosecond circular-dichroism chronoscopy—a spectroscopy technique that employs two circularly polarized pulses in co-rotating and counter-rotating geometries—can measure the amplitudes and phases of continuum–continuum transitions in electron vortices.

    • Meng Han
    • Jia-Bao Ji
    • Hans Jakob Wörner
    Article
  • To run algorithms on a computer they are broken down into logical operations that are implemented in hardware. A quantum logical AND gate has now been demonstrated, which could substantially improve the efficiency of near-term quantum computers.

    • Ji Chu
    • Xiaoyu He
    • Dapeng Yu
    ArticleOpen Access
  • Casimir forces are normally attractive and cause stiction, that is, static friction preventing surfaces in contact from starting to move. Now, a system exhibiting tunable repulsive critical Casimir forces, relevant for the development of micro- and nanodevices, is demonstrated.

    • Falko Schmidt
    • Agnese Callegari
    • Giovanni Volpe
    ArticleOpen Access
  • Hexagonal boron nitride is a common component of 2D heterostructures. Defects implanted in boron nitride crystals can be used to perform spatially resolved sensing of properties, including temperature, magnetism and current.

    • A. J. Healey
    • S. C. Scholten
    • J.-P. Tetienne
    Article
  • Ultracold gases composed of lanthanide atoms are characterized by long-range dipolar interactions. These have now been exploited to observe quantized vortices in a dipolar condensate through the manipulation of the atoms by rotating external magnetic fields.

    • Lauritz Klaus
    • Thomas Bland
    • Francesca Ferlaino
    ArticleOpen Access
  • The transition from a glassy to a liquid phase is normally assumed to take place cooperatively across the whole material. But now, experiments show that, under certain conditions, isolated regions of liquid can form in the glassy matrix first.

    • Ana Vila-Costa
    • Marta Gonzalez-Silveira
    • Javier Rodriguez-Viejo
    Article