Articles in 2013

Filter By:

Article Type
Year
  • Double quantum dots are proving themselves to be an excellent test bed for many-body physics. These artificial atoms now demonstrate a phenomenon in which the capacitive coupling between them causes the spin and charge degrees of freedom of the electrons in the system to become entangled—the so-called SU(4) Kondo effect.

    • A. J. Keller
    • S. Amasha
    • D. Goldhaber-Gordon
    Article
  • Assemblies of colloidal particles provide a micrometre-scale analogue of atomic and molecular liquids and solids. Now, real-time visualization of the liquid-solid transition in systems of spherical colloids reveals complex pathways involving precursors of hexagonal close-packed, body-centred cubic and face-centred cubic symmetry.

    • Peng Tan
    • Ning Xu
    • Lei Xu
    Article
  • Defects in silicon carbide can produce continuous-wave microwaves at room temperature. Spectroscopic analysis indicates a photoinduced inversion of the population in the spin ground states, which makes the defects a potential route to stimulated amplification of microwave radiation.

    • H. Kraus
    • V. A. Soltamov
    • G. V. Astakhov
    Article
  • It is shown that for thermodynamics and statistical physics to be internally consistent, Gibbs’ original—rather than Boltzmann’s widely used—definition of entropy needs to be adopted. Consequently, negative absolute temperatures are strictly forbidden, and cold-atom gases are unlikely to be laboratory analogues to dark energy.

    • Jörn Dunkel
    • Stefan Hilbert
    Article
  • The mathematical connection between isostatic lattices—which are relevant for granular matter, glasses and other ‘soft’ systems—and topological quantum matter is as deep as it is unexpected.

    • C. L. Kane
    • T. C. Lubensky
    Article
  • A room-temperature motion sensor with record sensitivity is created using a levitating silica nanoparticle. Feedback cooling to reduce the noise arising from Brownian motion enables a detector that is perhaps even sensitive enough to detect non-Newtonian gravity-like forces.

    • Jan Gieseler
    • Lukas Novotny
    • Romain Quidant
    Article
  • Ferroelectric domain switching on the surface of a lithium niobate thin film can be induced by the tip of a scanning probe microscope, and gives rise to both regular and chaotic spatiotemporal patterns. Moreover, the long-range interactions that govern these phenomena can be tuned by varying temperature, humidity, domain spacing and tip bias.

    • A. V. Ievlev
    • S. Jesse
    • S. V. Kalinin
    Article
  • A high-confinement plasma that is potentially useful for controlled fusion has now been sustained for over 30 s. The Experimental Advanced Superconducting Tokamak in Hefei, China, achieved this record pulse length by first confining the plasma using lithium-treated vessel walls, and then maintaining it with a so-called lower hybrid current drive.

    • J. Li
    • H. Y. Guo
    • X. L. Zou
    Article
  • An electron and a hole trapped in the same quantum dot couple together to form an exciton. Conventionally the hole involved is a heavy hole. Light-hole excitons are now observed by applying elastic stress to initially unstrained gallium arsenide-based dots. The quasiparticles are identified by their optical emission signature, and could be used in future quantum technologies.

    • Y. H. Huo
    • B. J. Witek
    • O. G. Schmidt
    Article
  • In the band theory of solids, the topological properties of Bloch bands are characterized by geometric phases. For cold atoms moving in a one-dimensional optical potential the geometric phase can be measured directly using Bloch oscillations and Ramsey interferometry.

    • Marcos Atala
    • Monika Aidelsburger
    • Immanuel Bloch
    Article
  • A combination of measurements from the Solar Dynamics Observatory and radiospectroscopy data from the Nançay Radioheliograph now details the mechanism that connects coronal mass ejections from the sun and the acceleration of particles to relativistic speeds. A spatial and temporal correlation between a coronal ‘bright front’ and radio emissions associated with electron acceleration demonstrates the fundamental relationship between the two.

    • Eoin P. Carley
    • David M. Long
    • Peter T. Gallagher
    Article
  • Superparamagnetism (preferential alignment of spins along an easy axis) is a useful effect for spintronic applications as it prevents spin reversal. It is now shown that high-spin quantum dots can become magnetically anisotropic when coupled to nearby ferromagnets—‘artificial’ superparamagnets.

    • Maciej Misiorny
    • Michael Hell
    • Maarten R. Wegewijs
    Article
  • Can Alice verify the result of a quantum computation that she has delegated to Bob without using a quantum computer? Now she can. A protocol for testing a quantum computer using minimum quantum resources has been proposed and demonstrated.

    • Stefanie Barz
    • Joseph F. Fitzsimons
    • Philip Walther
    Article
  • If correlations decay exponentially in a one-dimensional quantum many-body system, then entanglement satisfies an area law. The intuitive explanation for this turns out to be wrong, but the statement is nevertheless true, as demonstrated by a proof based on quantum information theory.

    • Fernando G. S. L. Brandão
    • Michał Horodecki
    Article
  • The Kibble–Zurek mechanism describes the spontaneous formation of defects in systems that are undergoing a second-order phase transition at a finite rate. Familiar to cosmologists and condensed matter physicists, this mechanism is now found to be responsible for the spontaneous creation of solitons in a Bose–Einstein condensate.

    • Giacomo Lamporesi
    • Simone Donadello
    • Gabriele Ferrari
    Article
  • Models for the topology or dynamics of various networks abound, but until now, there has been no single universal framework for complex networks that can separate factors contributing to the topology and dynamics of networks across biological and social systems.

    • Baruch Barzel
    • Albert-László Barabási
    Article