Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
What happens if the 'weak link' between two superconductors in a Josephson junction is a carbon nanotube, with a limited number of states available for electron transport? A supercurrent flows, but in a unique fashion.
When it comes to superconducting device components, there is no such thing as too thin, but superconductivity has its limits. Now, ultrathin lead films with crystalline perfection have been shown to be able to carry large dissipationless currents down to a thickness of a few monolayers.
Electron spins are traditionally manipulated by a resonant magnetic field, but spin–orbit coupling provides a better option of achieving spin operation, using a resonant electric field. A theoretical treatment now fills in the microscopic detail of this process.
In the early 1900s, the Solvay conferences famously brought together the early protagonists of quantum theory. At the latest meeting in the series, the issue was now the quantum structure of space–time itself.