Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transfer-printed stacked nanomembrane lasers on silicon

Abstract

The realization of silicon-based light sources has been the subject of a major research and development effort worldwide. Such sources may help make integrated photonic and electronic circuitry more cost-effective, with higher performance and greater energy efficiency. The hybrid approach, in which silicon is integrated with a IIIV gain medium, is an attractive route in the development of silicon lasers because of its potential for high efficiency. Hybrid lasers with good performance have been reported that are fabricated by direct growth or direct wafer-bonding of the gain medium to silicon. Here, we report a membrane reflector surface-emitting laser on silicon that is based on multilayer semiconductor nanomembrane stacking and a stamp-assisted transfer-printing process. The optically pumped laser consists of a transferred IIIV InGaAsP quantum-well heterostructure as the gain medium, which is sandwiched between two thin, single-layer silicon photonic-crystal Fano resonance membrane reflectors. We also demonstrate high-finesse single- or multiwavelength vertical laser cavities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MR-VCSEL on silicon.
Figure 2: Top and bottom membrane reflector performances.
Figure 3: Low-temperature MR-VCSEL performances.
Figure 4: RT design of MR-VCSELs and multispectral lasing.

Similar content being viewed by others

References

  1. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article  ADS  Google Scholar 

  2. Miller, D. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  3. Soref, R. A. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).

    Article  ADS  Google Scholar 

  4. Pavesi, L. Will silicon be the photonic material for the third millenium? J. Phys. Condens. Mattter 15, R1169–R1196 (2003).

    Article  ADS  Google Scholar 

  5. Liu, J. F., Sun, X. C., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679–681 (2010).

    Article  ADS  Google Scholar 

  6. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  7. Rong, H., Liu, A. & Paniccia, M. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  8. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    Article  ADS  Google Scholar 

  9. Mi, Z., Bhattacharya, P., Yang, J. & Pipe, K. P. Room-temperature self organized In0.5Ga0.5As quantum dot laser on silicon. Electron. Lett 41, 742–744 (2005).

    Article  Google Scholar 

  10. Balakrishnan, G. et al. Room-temperature optically pumped (Al) GaSb vertical-cavity surface-emitting laser monolithically grown on an Si(100) substrate. IEEE J. Sel. Top. Quantum Electron. 12, 1636–1641 (2006).

    Article  ADS  Google Scholar 

  11. Bowers, J. E. et al. Design and fabrication of optically pumped hybrid silicon–AlGaInAs evanescent lasers. IEEE J. Sel. Top. Quantum Electron. 12, 1657–1663 (2006).

    Article  ADS  Google Scholar 

  12. Van Campenhout, J. et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007).

    Article  ADS  Google Scholar 

  13. Stankovic, S. et al. 1310 nm hybrid IIIV/Si Fabry–Perot laser based on adhesive bonding. IEEE Photon. Technol. Lett. 23, 1781–1783 (2011).

    Article  ADS  Google Scholar 

  14. Sciancalepore, C. in 8th IEEE International Conference on Group IV Photonics (GFP) 205–207 (IEEE, 2011).

  15. Bakir, B. B. et al. Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror. Appl. Phys. Lett. 88, 081113 (2006).

    Article  ADS  Google Scholar 

  16. Roelkens, G. et al. IIIV/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev. 4, 751–779 (2010).

    Article  ADS  Google Scholar 

  17. Moutanabbir, O. & Gösele, U. Heterogeneous integration of compound semiconductors. Annu. Rev. Mater. Res. 40, 469–500 (2010).

    Article  ADS  Google Scholar 

  18. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  ADS  Google Scholar 

  19. Lousse, V. et al. Angular and polarization properties of a photonic crystal slab mirror. Opt. Express 12, 1575–1582 (2004).

    Article  ADS  Google Scholar 

  20. Mateus, C. F. R., Huang, M. C. Y., Chen, L., Chang-Hasnain, C. J. & Suzuki, Y. Broadband mirror (1.12–1.62 µm) using single-layer sub-wavelength grating. IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).

    Article  ADS  Google Scholar 

  21. Boutami, S. et al. Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence. IEEE Photon. Technol. Lett. 18, 835–837 (2006).

    Article  ADS  Google Scholar 

  22. Magnusson, R. & Shokooh-Saremi, M. Physical basis for wideband resonant reflectors. Opt. Express 16, 3456–3462 (2008).

    Article  ADS  Google Scholar 

  23. Yang, H. et al. Resonance control of membrane reflectors with effective index engineering. Appl. Phys. Lett. 95, 023110 (2009).

    Article  ADS  Google Scholar 

  24. Yang, H. et al. Broadband membrane reflectors on glass. IEEE Photon. Technol. Lett. 24, 476–478 (2012).

    Article  ADS  Google Scholar 

  25. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119–122 (2007).

    Article  ADS  Google Scholar 

  26. Boutami, S., Bakir, B., Regreny, P., Leclercq, J. & Viktorovitch, P. Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror. Electron. Lett. 43, 282–283 (2007).

    Article  Google Scholar 

  27. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2006).

    Article  ADS  Google Scholar 

  28. Sun, L., Qin, G., Celler, G. K., Zhou, W. & Ma, Z. 12-GHz thin-film transistors with transferrable silicon nanomembranes for high-performance massive flexible electronics (cover story). Small 6, 2553–2557 (2010).

    Article  Google Scholar 

  29. Wilmsen, C. W., Temkin, H. & Coldren, L. A. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications Vol. 24 (Cambridge Univ. Press, 2001).

  30. Zhao, D., Ma, Z. & Zhou, W. Field penetrations in photonic crystal Fano reflectors. Opt. Express 18, 14152–14158 (2010).

    Article  ADS  Google Scholar 

  31. Yuan, H. C., Ma, Z., Roberts, M. M., Savage, D. E. & Lagally, M. G. High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers. J. Appl. Phys. 100, 013708 (2006).

    Article  ADS  Google Scholar 

  32. Zhou, W. et al. Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes. J. Phys. D 42, 234007 (2009).

    Article  ADS  Google Scholar 

  33. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  ADS  Google Scholar 

  34. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    Article  ADS  Google Scholar 

  35. Zhang, K., Seo, J. H., Zhou, W. & Ma, Z. Fast flexible electronics using transferrable silicon nanomembranes (topical review). J. Phys. D 45, 143001 (2012).

    Article  ADS  Google Scholar 

  36. Rapp, S. et al. All-epitaxial single-fused 1.55 µm vertical cavity laser based on an InP Bragg reflector. Jpn J. Appl. Phys 38, 1261–1264 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by US AFOSR STTR programmes FA9550-09-C-0200 and FA9550-11-C-0026 and by US ARO (W911NF-09-1-0505). The silicon nanomembrane work was partially supported by an AFOSR MURI programme (FA9550-08-1-0337), and the initial membrane reflector work was supported by DARPA YFA (HR80011-08-1-0058). The AFOSR programme manager is G. Pomrenke and the ARO programme manager is M. Gerhold. The authors also acknowledge help and support from R. Soref, Z. Qiang, S. Fan, J. A. Rogers, S. Wang, R. Li, T. Saha, H. Mi and G. Gui on this project.

Author information

Authors and Affiliations

Authors

Contributions

H.Y., S.C., Y.S., Z.M. and W.Z. contributed to device fabrication. D.Z., Z.M. and W.Z. contributed to device design. W.Y., J.S., S.C., Z.M. and W.Z. contributed to nanomembrane transfer printing. H.Y., D.Z., S.C., Z.M. and W.Z. contributed to device characterization. J.B. and M.H. contributed to InGaAsP quantum well epitaxial growth. Z.M. and W.Z. guided the project. H.Y., D.Z., Z.M. and W.Z. wrote the paper.

Corresponding authors

Correspondence to Zhenqiang Ma or Weidong Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 732 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Zhao, D., Chuwongin, S. et al. Transfer-printed stacked nanomembrane lasers on silicon. Nature Photon 6, 615–620 (2012). https://doi.org/10.1038/nphoton.2012.160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing