Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer

Abstract

Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of a suitable low-bandgap polymer. Here, we demonstrate highly efficient single and tandem polymer solar cells featuring a low-bandgap conjugated polymer (PBDTT-DPP: bandgap, 1.44 eV). A single-layer device based on the polymer provides a power conversion efficiency of 6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which is, to the best of our knowledge, the highest certified efficiency for a polymer solar cell to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular design, optical properties and electron density of HOMO and LUMO for PBDTT-DPP.
Figure 2: JV characteristics and EQEs of regular and inverted single-cell devices.
Figure 3: Inverted tandem solar cells.
Figure 4: Quantum efficiencies, JV characteristics and stability of single cells and tandem cells.
Figure 5

Similar content being viewed by others

References

  1. Würfel, W. Physics of Solar Cells (Wiley-VCH, 2005).

    Book  Google Scholar 

  2. King, R. R. et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007).

    Article  ADS  Google Scholar 

  3. Wang, X. H., et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photon. 5, 480–484 (2011).

    Article  ADS  Google Scholar 

  4. Riede, M. et al. Efficient organic tandem solar cells based on small molecules. Adv. Funct. Mater. 21, 3019–3028 (2011).

    Article  Google Scholar 

  5. Xue, J., Uchida, S., Rand, B. P. & Forrest, S. R. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 85, 5757–5759 (2004).

    Article  ADS  Google Scholar 

  6. Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  ADS  Google Scholar 

  7. Gilot, J., Wienk, M. M. & Janssen, R. A. J. Optimizing polymer tandem solar cells. Adv. Mater. 22, E67–E71 (2010).

    Article  Google Scholar 

  8. Sista, S. et al. Highly efficient tandem polymer photovoltaic cells. Adv. Mater. 22, 380–383 (2010).

    Article  Google Scholar 

  9. Chou, C. H. et al. Metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture. Adv. Mater. 23, 1282–1286 (2011).

    Article  Google Scholar 

  10. Cheng, Y. J., Yang, S. H. & Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Article  Google Scholar 

  11. Coakley, K. M. & McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004).

    Article  Google Scholar 

  12. Brabec, J., Sariciftci, N. S. & Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001).

    Article  Google Scholar 

  13. Boudreault, P. T., Najari, A. & Leclerc, M. Processable low-bandgap polymers for photovoltaic applications. Chem. Mater. 23, 456–469 (2011).

    Article  Google Scholar 

  14. Zhu, Z. et al. Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules 40, 1981–1986 (2007).

    Article  ADS  Google Scholar 

  15. Hou, J. et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc. 130, 16144–16145 (2008).

    Article  Google Scholar 

  16. Liang, Y. Y., et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009).

    Article  Google Scholar 

  17. Bijleveld, J. C. et al. Efficient solar cells based on an easily accessible diketopyrrolopyrrole polymer. Adv. Mater. 22, E242–E246 (2010).

    Article  Google Scholar 

  18. Piliego, C. et al. Synthetic control of structural order in n-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 7595–7597 (2010).

    Article  Google Scholar 

  19. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  Google Scholar 

  20. Li, G., Chu, C.-W., Shrotriya, V., Huang, J. & Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 88, 253503 (2006).

    Article  ADS  Google Scholar 

  21. White, M. S. et al. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).

    Article  ADS  Google Scholar 

  22. Liao, H-H. et al. Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl. Phys. Lett. 92, 173303 (2008).

    Article  ADS  Google Scholar 

  23. Shrotriya, V. et al. Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl. Phys. Lett. 88, 064104 (2006).

    Article  ADS  Google Scholar 

  24. Padinger, F., Rittberger, R. S. & Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003).

    Article  Google Scholar 

  25. Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005).

    Article  ADS  Google Scholar 

  26. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  ADS  Google Scholar 

  27. Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649–653 (2009).

    Article  ADS  Google Scholar 

  28. Liang, Y. Y. et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

    Article  Google Scholar 

  29. Chu, T. Y. et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole- 4,6-dione and dithieno[3,2-b:2′,3′-d]silole copolymer with a power conversion efficiency of 7.3%. J. Am. Chem. Soc. 133, 4250–4253 (2011).

    Article  Google Scholar 

  30. Zhou, H. X. et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995–2998 (2011).

    Article  Google Scholar 

  31. He, Z. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density and fill factor in polymer solar cells. Adv. Mater. 23, 4636–4643 (2011).

    Article  Google Scholar 

  32. Sista, S., Hong, Z. R., Chen, L. M. & Yang, Y. Tandem polymer photovoltaic cells—current status, challenges and future outlook. Energy Environ. Sci. 4, 1606–1620 (2011).

    Article  Google Scholar 

  33. Yang, J. et al. A robust inter-connecting layer for achieving high performance tandem polymer solar cells. Adv. Mater. 23, 3465–3470 (2011).

    Article  Google Scholar 

  34. Dennler, G. et al. Design rules for donors in bulk-heterojunction tandem solar cells—towards 15% energy-conversion efficiency. Adv. Mater. 20, 579–583 (2008).

    Article  Google Scholar 

  35. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  Google Scholar 

  36. Huo, L. et al. Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules 42, 6564–6571 (2009).

    Article  ADS  Google Scholar 

  37. Huo, L. J. et al. A polybenzo[1,2-b:4,5-b′]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew. Chem. Int. Ed. 49, 1500–1503 (2010).

    Article  Google Scholar 

  38. Shrotriya, V. et al. Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 16, 2016–2023 (2006).

    Article  Google Scholar 

  39. Bijleveld, J. C. et al. Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. J. Am. Chem. Soc. 131, 16616–16617 (2009).

    Article  Google Scholar 

  40. Huo, L. J. et al. Replacement of alkoxy with alkylthienyl: a feasible approach to improve photovoltaic properties of PBDTTT-based polymers. Angew. Chem. Int. Ed. 50, 1–7 (2011).

    Article  Google Scholar 

  41. Coffin, R. C., Peet, J., Rogers, J. & Bazan, G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high performance bulk heterojunction solar cells. Nature Chem. 1, 657–661 (2009).

    Article  ADS  Google Scholar 

  42. He, Y. J., Chen, H.-Y., Hou, J. H. & Li, Y. F. Indene−C60 bisadduct: a new acceptor for high-performance polymer solar cells. J. Am. Chem. Soc. 132, 1377–1382 (2010).

    Article  Google Scholar 

  43. Burdick, J. & Glatfelter, T. Spectral response and I–V measurements of tandem amorphous-silicon alloy solar cells. Solar Cells 18, 301–314 (1986).

    Article  Google Scholar 

  44. Gilot, J., Wienk, M. M. & Janssen, R. A. J. Measuring the external quantum efficiency of two-terminal polymer tandem solar cells. Adv. Funct. Mater. 20, 3904–3911 (2010).

    Article  Google Scholar 

  45. Sun, B. Q. & Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408–2413 (2005).

    Article  ADS  Google Scholar 

  46. Beek, W. J. E., Wienk, M. M. & Janssen, R. A. J. Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater. 16, 1009–1013 (2004).

    Article  Google Scholar 

  47. Meusel, M. et al. Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation. Prog. Photovolt. Res. Appl. 11, 499–514 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation (NSF, grant no. CHE0822573; programme manager: C. Foss), the Air Force Office of Scientific Research (AFOSR, grant no. FA9550-09-1-0610; programme manager: C. Lee) and the Office of Naval Research (ONR, grant no. N00014-04-1-0434; programme manager: P. Armistead), as well as by the US Department of Energy (contract no. DE-AC36-08-GO28308) together with the National Renewable Energy Laboratory. The authors thank R. Green, E. Richard, W.B. Yang and W.-C. Hsu of the Department of Materials Science and Engineering at UCLA for material testing, synthesis, ultraviolet photoelectron spectroscopy and X-ray diffraction measurements, respectively. Thanks also go to K.N. Houk and B. Martin of the Department of Chemistry (UCLA) for the quantum chemical calculation and R. Kaner and P. Weiss of the Department of Chemistry (UCLA) for reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.D. and J.You contributed equally to this work. L.D., J.You and Y.Y. developed the ideas. L.D. designed the chemical structure and performed materials synthesis and characterization. J.You fabricated the inverted tandem device and carried out data analysis. Y.H. and J.Yang participated in material synthesis and characterization. S.M. provided the ZnO for ICL. C.C. modified the PEDOT for ICL. T.M. and K.E. performed the certification at NREL. G.L. guided device testing at UCLA and coordinated certification. L.D., J.You, G.L. and Y.Y. prepared the manuscript. All authors discussed the results and commented on the manuscript. Y.Y. planned and supervised the project.

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, L., You, J., Yang, J. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photon 6, 180–185 (2012). https://doi.org/10.1038/nphoton.2011.356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing