Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature mid-infrared single-photon spectral imaging

Abstract

The spectral imaging and detection of mid-infrared wavelengths is emerging as an enabling technology of great technical and scientific interest, primarily because important chemical compounds display unique and strong mid-infrared spectral fingerprints that reveal valuable chemical information. Modern quantum cascade lasers have evolved as ideal coherent mid-infrared excitation sources, but simple, low-noise, room-temperature detectors and imaging systems lag behind. We address this need by presenting a novel, field-deployable, upconversion system for sensitive, two-dimensional, mid-infrared spectral imaging. A room-temperature dark noise of 0.2 photons/spatial element/second is measured, which is a billion times below the dark noise level of cryogenically cooled InSb cameras. Single-photon imaging and a resolution of up to 200 × 100 spatial elements are obtained with a record-high continuous-wave quantum efficiency of 20% for polarized incoherent light at 3 µm. The proposed method is relevant for existing and new mid-infrared applications such as gas analysis and medical diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Image upconversion system.
Figure 2: Spectral imaging.
Figure 3: Monochromatic image reconstruction.
Figure 4: Noise analysis.

Similar content being viewed by others

References

  1. Abedin, M. N., Mlynczak, M. G. & Refaat, T. F. Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission. Proc. SPIE 7808, 78080V1–13 (2010).

    Article  Google Scholar 

  2. Li, J., Parchatka, U., Königstedt, R. & Fischer, H. Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer. Opt. Express 20, 7590–7601 (2012).

    Article  ADS  Google Scholar 

  3. Houghton, J. Global warming. Rep. Prog. Phys. 68, 1343–1403 (2005).

    Article  ADS  Google Scholar 

  4. Kim, S. et al. Potential and challenges for mid-infrared sensors in breath diagnostics. IEEE Sensors J. 10, 145–158 (2010).

    Article  ADS  Google Scholar 

  5. McCurdy, M. R., Bakhirkin, Y., Wysocki, G., Lewicki, R. & Tittel, F. K. Recent advances of laser-spectroscopy based techniques for applications in breath analysis. J. Breath Res. 1, 014001 (2007).

    Article  ADS  Google Scholar 

  6. Song, G. et al. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 67, 227–231 (2010).

    Article  Google Scholar 

  7. Amrania, H. et al. Digistain: a digital staining instrument for histopathology. Opt. Express 20, 7290–7299 (2012).

    Article  ADS  Google Scholar 

  8. Fernandez, D. C., Bhargava, R., Hewitt, S. M. & Levin, I. W. Infrared spectroscopic imaging for histopathologic recognition. Nature Biotechnol. 23, 469–474 (2005).

    Article  Google Scholar 

  9. Daffara, C. Ambrosini, D. Pezzati, L. & Paoletti, D. Thermal quasi-reflectography: a new imaging tool in art conservation. Opt. Express 20, 14746–14753 (2012).

    Article  ADS  Google Scholar 

  10. Midwinter, J. E. Image conversion from 1.6 μ to the visible in lithium niobate. Appl. Phys. Lett. 12, 68–70 (1968).

    Article  ADS  Google Scholar 

  11. Warner, J. Spatial resolution measurements in up-conversion from 10.6 m to the visible. Appl. Phys. Lett. 13, 360–362 (1968).

    Article  ADS  Google Scholar 

  12. Weller, J. F. & Andrews, R. A. Resolution measurements in parametric upconversion of images. Opt. Quantum Electron. 2, 171–176 (1970).

    Google Scholar 

  13. Boyd, R. W. & Townes, C. H. An infrared upconverter for astronomical imaging. Appl. Phys. Lett. 31, 440–442 (1977).

    Article  ADS  Google Scholar 

  14. Andrews, R. A. IR image parametric up-conversion. IEEE J. Quantum Electron. QE6, 68–80 (1970).

    Article  ADS  Google Scholar 

  15. Firester, A. H. Image upconversion: part III. J. Appl. Phys. 41, 703–709 (1970).

    Article  ADS  Google Scholar 

  16. Falk, J. & Tiffany, W. B. Theory of parametric upconversion of thermal images. J. Appl. Phys. 43, 3762–3769 (1972).

    Article  ADS  Google Scholar 

  17. Hulme, K. F. & Warner, J. Theory of thermal imaging using infrared to visible image up-conversion. Appl. Opt. 11, 2956–2964 (1972).

    Article  ADS  Google Scholar 

  18. Chiou, W. Geometric optics theory of parametric image upconversion. J. Appl. Phys. 42, 1985–1993 (1971).

    Article  ADS  Google Scholar 

  19. Dam, J. S., Pedersen, C. & Tidemand-Lichtenberg, P. High-resolution two-dimensional image upconversion of incoherent light. Opt. Lett. 35, 3796–3798 (2010).

    Article  ADS  Google Scholar 

  20. Baldelli, S. Sensing: infrared image upconversion. Nature Photon. 5, 75–76 (2011).

    Article  ADS  Google Scholar 

  21. Vaughan, P. M. & Trebino, R. Optical-parametric-amplification imaging of complex objects. Opt. Express 19, 8920–8929 (2011).

    Article  ADS  Google Scholar 

  22. Devaux, F., Mosset, A., Lantz, E., Monneret, S. & Gall, H. L. Image upconversion from the visible to the UV domain: application to dynamic UV microstereolithography. Appl. Opt. 40, 4953–4957 (2001).

    Article  ADS  Google Scholar 

  23. Pedersen, C., Karamehmedović, E., Dam, J. S. & Tidemand-Lichtenberg, P. Enhanced 2D-image upconversion using solid-state lasers. Opt. Express 17, 20885–20890 (2009).

    Article  ADS  Google Scholar 

  24. Brustlein, S., Lantz, E. & Devaux, F. Absolute radiance imaging using parametric image amplification. Opt. Lett. 32, 1278–1280 (2007).

    Article  ADS  Google Scholar 

  25. Pomarico, E., Sanguinetti, B., Thew, R. & Zbinden, H. Room temperature photon number resolving detector for infared wavelengths. Opt. Express 18, 10750–10759 (2010).

    Article  ADS  Google Scholar 

  26. Huang, K., Gu, X. R., Pan, H. F. & Wu, E. Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion. Appl. Phys. Lett. 100, 151102 (2012).

    Article  ADS  Google Scholar 

  27. Nee, M. J., McCanne, R., Kubarych, K. J. & Joffre, M. Two-dimensional infrared spectroscopy detected by chirped pulse upconversion. Opt. Lett. 32, 713–715 (2007).

    Article  ADS  Google Scholar 

  28. Kubarych, K. J., Joffre, M., Moore, A., Belabas, N. & Jonas, D. M. Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer. Opt. Lett. 30, 1228–1230 (2005).

    Article  ADS  Google Scholar 

  29. DeCamp, M. F. & Tokmakoff, A. Upconversion multichannel infrared spectrometer. Opt. Lett. 30, 1818–1820 (2005).

    Article  ADS  Google Scholar 

  30. Rogalski, A. Infrared Detectors (CRC Press, 2010).

  31. Dam, J. S., Pedersen, C. & Tidemand-Lichtenberg, P. Theory for upconversion of incoherent images. Opt. Express 20, 1475–1482 (2012).

    Article  ADS  Google Scholar 

  32. Rogalski, A. Infrared Detectors (CRC Press, 2010).

  33. Schwesyg, J. R. et al. Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals. Opt. Lett. 35, 1070–1072 (2010).

    Article  ADS  Google Scholar 

  34. Louisell, W. H., Yariv, A. & Siegman A. E. Quantum fluctuations and noise in parametric processes. I. Phys. Rev. 124, 1646–1654 (1961).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank P.S. Ramanujam for helpful discussions regarding the layout of the manuscript. The authors also acknowledge financial support from the Copenhagen Cleantech Cluster (CCC) and Danish Proof-of-Concept funding.

Author information

Authors and Affiliations

Authors

Contributions

J.S.D. was responsible for the experimental work. P.T. designed the conversion module. J.S.D. performed the numerical modelling. All authors discussed the results. All authors contributed to preparation of the manuscript.

Corresponding author

Correspondence to Jeppe Seidelin Dam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Movie 1

Supplementary Movie 1 (MOV 2348 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dam, J., Tidemand-Lichtenberg, P. & Pedersen, C. Room-temperature mid-infrared single-photon spectral imaging. Nature Photon 6, 788–793 (2012). https://doi.org/10.1038/nphoton.2012.231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing