Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonlinear silicon photonics

Abstract

The nonlinearities in silicon are diverse. This Review covers the wealth of nonlinear effects in silicon and highlights the important applications and technological solutions in nonlinear silicon photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of a dipole excitation and possible energy level diagrams.
Figure 2: Four silicon waveguide structures and their respective electric field distributions.
Figure 3: Nonlinear silicon light sources.
Figure 4: Applications exploiting the FWM effect.
Figure 5: Time-to-frequency conversion scheme and demonstration of a time lens.
Figure 6: Gas sensor.

Similar content being viewed by others

References

  1. Espinola, R. L., Dadap, J. I., Osgood, R. M., McNab, S. J. & Vlasov, Y. A. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 13, 4341–4349 (2005).

    Article  ADS  Google Scholar 

  2. Kuo, Y., Rong, H., Sih, V., Xu, S. & Paniccia, M. Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Opt. Express 14, 11721–11726 (2006).

    Article  ADS  Google Scholar 

  3. Koos, C. et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photon. 3, 216–219 (2009).

    Article  ADS  Google Scholar 

  4. Ji, H. et al. Optical waveform sampling and error-free demultiplexing of 1.28 Tbit/s serial data in a silicon nanowire. Optical Fiber Communication Conf. paper PDPC7 (2010).

  5. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–85 (2008).

    Article  ADS  Google Scholar 

  6. Dell'Olio, F. & Passaro, V. M. Optical sensing by optimized silicon slot waveguides. Opt. Express 15, 4977–4993 (2007).

    Article  ADS  Google Scholar 

  7. Robinson, J. T., Chen, L. & Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 16, 4296–4301 (2008).

    Article  ADS  Google Scholar 

  8. Tang, C. K. & Reed, G. T. Highly efficient optical phase modulator in SOI waveguides. Electron. Lett. 31, 451–452 (1995).

    Article  Google Scholar 

  9. Baehr-Jones, T. & Hochberg, M. Optical modulation and detection in slotted silicon waveguides. Opt. Express 13, 5216–5226 (2005).

    Article  ADS  Google Scholar 

  10. Brosi, J.-M. et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008).

    Article  ADS  Google Scholar 

  11. Leuthold, J. et al. Silicon organic hybrid technology — a platform for practical nonlinear optics. Proc. IEEE 97, 1304–1316 (2009).

    Article  Google Scholar 

  12. Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003).

    Article  ADS  Google Scholar 

  13. Liang, T. K. & Tsang, H. K. Efficient Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 85, 3343–3345 (2004).

    Article  ADS  Google Scholar 

  14. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  15. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  16. Tsuchizawa, T. et al. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quant. Electron. 11, 232–240 (2005).

    Article  ADS  Google Scholar 

  17. Bogaerts, W. et al. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE J. Sel. Top. Quant. Electron. 12, 1394–1401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  18. Lipson, M. Guiding, modulating, and emitting light on silicon — challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005).

    Article  ADS  Google Scholar 

  19. Vlasov, Y. A. Silicon photonics for next generation computing systems. Proc. 34th European Conf. Optical Communications paper Tu.1.A.1 (2008).

  20. Lee, B. G. & Bergmann, K. Silicon nano-photonic interconnection networks in multicore processor systems. Proc. OSA Annual Meeting paper FThS1 (2008).

  21. Van Thourhout, D. et al. Photonic interconnect layer on CMOS. Proc. 33rd European Conf. Optical Communications paper 6.3.1 (2007).

  22. Tsybeskov, L., Lockwood, D. J. & Ichikawa, M. Silicon photonics: CMOS going optical. Proc. IEEE 97, 1161–1165 (2009).

    Article  Google Scholar 

  23. Miller, D. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  24. Krishnamoorthy, A. V. et al. Computer systems based on silicon photonic interconnects. Proc. IEEE 97, 1337–1361 (2009).

    Article  Google Scholar 

  25. Corcoran, B. et al. Optical signal processing on a silicon chip at 640 Gb/s using slow-light. Opt. Express 18, 7770–7781 (2010).

    Article  ADS  Google Scholar 

  26. Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

    Google Scholar 

  27. Lin, Q., Painter, O. J. & Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express 15, 16604–16644 (2007).

    Article  ADS  Google Scholar 

  28. Osgood, R. M. Jr et al. Engineering nonlinearities in nanoscalse optical systems: Physics and applications in dispersion-engineered silicon nonaphotonics wires. Adv. Opt. Photon. 1, 162–235 (2009).

    Article  Google Scholar 

  29. Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, 1998).

    Google Scholar 

  30. Foster, M. A., Turner, A. C., Lipson, M. & Gaeta, A. L. Nonlinear optics in photonic nanowires. Opt. Express 16, 1300–1320 (2008).

    Article  ADS  Google Scholar 

  31. Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quant. Electron. QE-23, 123–129 (1987).

    Article  ADS  Google Scholar 

  32. Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006).

    Article  ADS  Google Scholar 

  33. Hochberg, M. et al. Towards a millivolt optical modulator with nano-slot waveguides. Opt. Express 15, 8401–8410 (2007).

    Article  ADS  Google Scholar 

  34. Koos, C., Brosi, J.-M., Waldow, M., Freude, W. & Leuthold, J. Silicon-on-insulator modulators for next-generation 100 Gbit/s-Ethernet. Proc. 33th European Conf. Optical Communications paper P056 (2007).

  35. Baehr-Jones, T. et al. Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V. Appl. Phys. Lett. 92, 163303 (2008).

    Article  ADS  Google Scholar 

  36. Liu, A. et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004).

    Article  ADS  Google Scholar 

  37. Liao, L. et al. 40 Gbit/s silicon optical modulator for high-speed applications. Electron. Lett. 43, 1196–1197 (2007).

    Article  Google Scholar 

  38. Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    Article  ADS  Google Scholar 

  39. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  40. Liu, Y. & Tsang, H. K. Time dependent density of free carriers generated by two photon absorption in silicon waveguides. Appl. Phys. Lett. 90, 211105 (2007).

    Article  ADS  Google Scholar 

  41. Vallaitis, T. et al. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries. Opt. Express 17, 17357–17368 (2009).

    Article  ADS  Google Scholar 

  42. Tsang, H. K. & Liu, Y. Nonlinear optical properties of silicon waveguides. Semicond. Sci. Tech. 23, 064007 (2008).

    Article  ADS  Google Scholar 

  43. Dinu, M. Dispersion of phonon-assisted nonresonant third-order nonlinearities. IEEE J. Quant. Electron. 39, 1498–1503 (2003).

    Article  ADS  Google Scholar 

  44. Sheik-Bahae, M. et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760–769 (1990).

    Article  ADS  Google Scholar 

  45. Raghunathan, V., Borlaug, D., Rice, R. R., Jalali, B. Demonstration of a mid-infrared silicon Raman amplifier. Opt. Express 15, 14355–14362 (2007).

    Article  ADS  Google Scholar 

  46. Liu, X., Osgood, R. M., Vlasov, Y. A. & Green, W. M. J. Broadband mid-infrared parametric amplification, net off-chip gain, and cascaded four-wave mixing in silicon photonic wires. Proc. 6th IEEE Int. Conf. Group IV Photonics pdp 1.3 (2009).

  47. Corcoran, B. et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides. Nature Photon. 3, 206–210 (2009).

    Article  ADS  Google Scholar 

  48. Foster, M. A., Moll, K. D. & Gaeta, A. L. Optimal waveguide dimensions for nonlinear interactions. Opt. Express 12, 2880–2887 (2004).

    Article  ADS  Google Scholar 

  49. Koos, C., Jacome, L., Poulton, C., Leuthold, J. & Freude, W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007).

    Article  ADS  Google Scholar 

  50. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photon. 2, 35–38 (2008).

    Article  ADS  Google Scholar 

  51. Michinobu, T. et al. A new class of organic donor–acceptor molecules with large third-order optical nonlinearities. Chem. Commun. 737–739 (2005).

  52. Esembeson, B. et al. A high optical quality supramolecular assembly for third-order integrated nonlinear optics. Adv. Mater. 20, 4584–4587 (2008).

    Article  Google Scholar 

  53. May, J. C., Biaggio, I., Bures, F. & Diederich, F. Extended conjugation and donor–acceptor substitution to improve the third-order optical nonlinearity of small molecules. Appl. Phys. Lett. 90, 251106 (2007).

    Article  ADS  Google Scholar 

  54. Hales, J. M. & Perry, J. W. Introduction to Organic Electronic and Optoelectronic Materials and Devices (eds Sun, S.-S. & Dalton, L.) 521–579 (CRC, 2008).

    Google Scholar 

  55. Leong, J. Y. Y. et al. A lead silicate holey fiber with γ = 1860 W−1 km−1 at 1550 nm. Optical Fiber Communication Conf. paper PDP22 (2005).

  56. Mägi, E. C. et al. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Opt. Express 15, 10324–10329 (2007).

    Article  ADS  Google Scholar 

  57. Hochberg, M. et al. Terahertz all-optical modulation in a silicon–polymer hybrid system. Nature Mater. 5, 703–709 (2006).

    Article  ADS  Google Scholar 

  58. Baehr-Jones, T. W. & Hochberg, M. J. Polymer silicon hybrid systems: A platform for practical nonlinear optics. J. Phys. Chem. C 112, 8085–8090 (2008).

    Article  Google Scholar 

  59. Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).

    Article  ADS  Google Scholar 

  60. Koos, C. et al. Highly-nonlinear silicon photonics slot waveguide. Optical Fiber Communication Conf. paper PDP25 (2008).

  61. Soljacic, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity J. Opt. Soc. Am. B 19, 2052–2059 (2002).

    Article  ADS  Google Scholar 

  62. Gu, L., Jiang, W., Chen, X., Wang, L. & Chen, R. T. High speed silicon photonic crystal waveguide modulator for low voltage operation. Appl. Phys. Lett. 90, 071105 (2007).

    Article  ADS  Google Scholar 

  63. Turner, A. C. et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006).

    Article  ADS  Google Scholar 

  64. Hartl, I. et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber. Opt. Lett. 26, 608–610 (2001).

    Article  ADS  Google Scholar 

  65. Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105 (2000).

    Article  ADS  Google Scholar 

  66. Raybon, G. et al. 40 Gbit/s pseudo-linear transmission over one million kilometres. Optical Fiber Communication Conf. paper FD10 (2002).

  67. Hillerkuss, D. et al. Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s. Optical Fiber Communication Conf. paper PDPC1 (2010).

  68. Tsang, H. K. et al. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength. Appl. Phys. Lett. 80, 416–418 (2002).

    Article  ADS  Google Scholar 

  69. Rieger, G. W., Virk, K. S. & Young, J. F. Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 900–902 (2004).

    Article  ADS  Google Scholar 

  70. Yin, L., Lin, Q. & Agrawal, G. P. Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett. 32, 391–393 (2007).

    Article  ADS  Google Scholar 

  71. Hsieh, I. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242–15249 (2007).

    Article  ADS  Google Scholar 

  72. Koonath, P., Solli, D. R. & Jalali, B. Continuum generation and carving on a silicon chip. Appl. Phys. Lett. 91, 061111 (2007).

    Article  ADS  Google Scholar 

  73. Wang, C. C. et al. Optical third harmonic generation in reflection from crystalline and amorphous samples of silicon. Phys. Rev. Lett. 57, 1647–1650 (1986).

    Article  ADS  Google Scholar 

  74. Dal Negro, L. Light emission from silicon nanostructures: Past, present and future perspectives. Proc. CLEO 2009 paper CTuN1 (2009).

  75. Espinola, R., Dadap, J., Osgood, R. Jr, McNab, S. & Vlasov, Y. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004).

    Article  ADS  Google Scholar 

  76. Liu, A., Rong, H., Paniccia, M., Cohen, O. & Hak, D. Net optical gain in a low loss silicon-on insulator waveguide by stimulated Raman scattering. Opt. Express 12, 4261–4267 (2004).

    Article  ADS  Google Scholar 

  77. Xu, Q., Almeida, V. & Lipson, M. Time resolved study of Raman gain in highly confined silicon-on-insulator waveguides. Opt. Express 12, 4437–4442 (2004).

    Article  ADS  Google Scholar 

  78. Jalali, B., Raghunathan, V., Boyraz, O., Claps, R. & Dimitropoulos, D. Wavelength conversion and light amplification in silicon waveguides. Proc. Int. Conf. Group IV Photonics paper WA3 (2004).

  79. Jones, R. et al. Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13, 519–525 (2005).

    Article  ADS  Google Scholar 

  80. Liu, Y. & Tsang, H. K. Nonlinear absorption and Raman gain in helium ion implanted silicon. Opt. Lett. 31, 1714–1716 (2006).

    Article  ADS  Google Scholar 

  81. Fathpour, S., Tsia, K. K. & Jalali, B. Energy harvesting in silicon Raman amplifiers. Appl. Phys. Lett. 89, 061109 (2006).

    Article  ADS  Google Scholar 

  82. Sih, V. et al. Raman amplification of 40Gb/s data in low-loss silicon waveguides. Opt. Express 15, 357–362 (2007).

    Article  ADS  Google Scholar 

  83. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  84. Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

    Article  ADS  Google Scholar 

  85. Okawachi, Y. et al. All-optical slow-light on a photonic chip. Opt. Express 14, 2317–2322 (2006).

    Article  ADS  Google Scholar 

  86. Liu, X., Osgood, R. M., Vlasov, J. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 557–560 (2010).

    Article  ADS  Google Scholar 

  87. Zlatanovic, S. et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photon. 4, 561–564 (2010).

    Article  ADS  Google Scholar 

  88. Levi, J. S. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  89. Fukuda, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005).

    Article  ADS  Google Scholar 

  90. Yamada, K. et al. All-optical efficient wavelength conversion using silicon photonic wire waveguide. IEEE Photon. Tech. Lett. 18, 1046–1048 (2006).

    Article  ADS  Google Scholar 

  91. Rong, H. S., Kuo, Y. H., Liu, A. S., Paniccia, M. & Cohen, O. High efficiency wavelength conversion of 10Gb/s data in silicon waveguides. Opt. Express 14, 1182–1188 (2006).

    Article  ADS  Google Scholar 

  92. Foster, M. A, Turner, A. C., Salem, R., Lipson, M. & Gaeta, A. L. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express 15, 12949–12958 (2007).

    Article  ADS  Google Scholar 

  93. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photon. 2, 35–38 (2008).

    Article  ADS  Google Scholar 

  94. Lee, B. G. et al. Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides. IEEE Photon. Tech. Lett. 21, 182–184 (2009).

    Article  ADS  Google Scholar 

  95. Vallaitis, T. et al. All-optical wavelength conversion at 42.7 Gbit/s in a 4 mm long silicon-organic hybrid waveguide. Optical Fiber Communication Conf. paper OWS3 (2009).

  96. Vallaitis, T. et al. All-optical wavelength conversion of 56 Gbit/s NRZ- DQPSK signals in silicon–organic hybrid strip waveguides. Optical Fiber Communication Conf. paper OTuN1 (2010).

  97. Astar, W. et al. Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire. Opt. Express 17, 12987–12999 (2009).

    Article  ADS  Google Scholar 

  98. Vallaitis, T. et al. All-optical wavelength conversion using cross-phase modulation at 42.7 Gbit/s in silicon-organic hybrid (SOH) waveguides. Proc. IEEE Int. Conf. Photonics in Switching 2009 78–79 (2009).

  99. Raghunathan, V., Claps, R., Dimitropoulos, D. & Jalali, B. Wavelength conversion in silicon using Raman induced four-wave mixing. Appl. Phys. Lett. 85, 34–36 (2004).

    Article  ADS  Google Scholar 

  100. Koonath, P., Solli, D. R. & Jalali, B. High efficiency CARS conversion in silicon. Conf. Lasers and Electro-optics & Quantum Electronics and Laser Science paper CThE3 (2008).

  101. Moss, D. J., Fu, L., Littler, I. & Eggleton, B. J. Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides. Electron. Lett. 41, 320–321 (2005).

    Article  Google Scholar 

  102. Li, F. et al. Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire. Opt. Express 18, 3905–3910 (2010).

    Article  ADS  Google Scholar 

  103. Azna, J. Time-to-frequency conversion using a single time lens. Opt. Commun. 217, 205–209 (2003).

    Article  ADS  Google Scholar 

  104. Foster, M. A. et al. Ultrafast waveform compression using a time-domain telescope. Nature Photon. 3, 581–585 (2009).

    Article  ADS  Google Scholar 

  105. Pavesi, L. & Lockwood, D. J. Silicon Photonics (Springer, 2004).

    Google Scholar 

  106. Zinoviev, K. et al. Silicon photonic biosensors for lab-on-a-chip applications. Adv. Opt. Technol. 383927 (2008).

  107. Baehr-Jones, T., Hochberg, M., Walker, C. & Scherer, A. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. 86, 081101 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the Center for Functional Nanostructures (CFN) funded by the German science foundation (DFG), the European project SOFI and the European project EURO-FOS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leuthold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon 4, 535–544 (2010). https://doi.org/10.1038/nphoton.2010.185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing