Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Quantum states made to measure

Recent progress in manipulating quantum states of light and matter brings quantum-enhanced measurements closer to prospective applications. The current challenge is to make quantum metrologic strategies robust against imperfections.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A Mach–Zehnder interferometer.
Figure 2: Logarithmic plot of the measurement uncertainty for the probe arm transmission at 100% (black), 90% (red) and 60% (blue).
Figure 3: A pictorial representation of the state of light in a Mach–Zehnder interferometer as a three-component real-space vector, analogous to the Poincaré vector for the polarization state of light.

References

  1. Fisher, R. A. Proc. Camb. Phil. Soc. 22, 700–725 (1925).

    Article  ADS  Google Scholar 

  2. Dirac, P. A. M. The Principles of Quantum Mechanics 4th edn, Ch. 1 (Clarendon Press, 1958).

    Book  Google Scholar 

  3. Caves, C. M. Phys. Rev. Lett. 45, 75–79 (1980).

    Article  ADS  Google Scholar 

  4. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Phys. Rev. A 54, R4649–R4652 (1996).

    Article  ADS  Google Scholar 

  5. Dowling, J. P. Phys. Rev. A 57, 4736–4746 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  7. Rubin, M. A. & Kaushik, S. Phys. Rev. A 75, 053805 (2007).

    Article  ADS  Google Scholar 

  8. Gilbert, G., Hamrick, M. & Weinstein, Y. S. J. Opt. Soc. Am. B 25, 1336–1340 (2008).

    Article  ADS  Google Scholar 

  9. Dorner, U. et al. Phys. Rev. Lett. 102, 040403 (2009).

    Article  ADS  Google Scholar 

  10. Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Nature 450, 393–396 (2007).

    Article  ADS  Google Scholar 

  11. Dell'Anno, F., De Siena, S. & Illuminati, F. Phys. Rep. 428, 53–168 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  12. Rarity, J. G. et al. Phys. Rev. Lett. 65, 1348–1351 (1990).

    Article  ADS  Google Scholar 

  13. Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Nature 429, 161–164 (2004).

    Article  ADS  Google Scholar 

  14. Walther, P. et al. Nature 429, 158–161 (2004).

    Article  ADS  Google Scholar 

  15. Nagata, T., Okamoto, R., O'Brien, J. L., Sasaki, K. & Takeuchi, S. Science 316, 726–729 (2007).

    Article  ADS  Google Scholar 

  16. Mosley, P. J. et al. Phys. Rev. Lett. 100, 133601 (2008).

    Article  ADS  Google Scholar 

  17. O'Brien, J. L. Science 318, 1567–1570 (2007).

    Article  ADS  Google Scholar 

  18. Bourennane, M. et al. Phys. Rev. Lett. 92, 107901 (2004).

    Article  ADS  Google Scholar 

  19. Lu, C.-Y. et al. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008).

    Article  ADS  Google Scholar 

  20. Cerf, N. J. Quantum Information with Continuous Variables of Atoms and Light (eds Cerf, N. J., Leuchs, G. & Polzik, E. S.) (Imperial College Press, 2007).

    Book  Google Scholar 

  21. Vahlbruch, H. et al. Phys. Rev. Lett. 100, 033602 (2008).

    Article  ADS  Google Scholar 

  22. Estève, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Nature 455, 1216–1219 (2008).

    Article  ADS  Google Scholar 

  23. Appel, J. et al. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article  ADS  Google Scholar 

  24. Ye, J., Kimble, H. J. & Katori, H. Science 320, 1734–1738 (2008).

    Article  ADS  Google Scholar 

  25. Boixo, S. et al. Phys. Rev. Lett. 101, 040403 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banaszek, K., Demkowicz-Dobrzański, R. & Walmsley, I. Quantum states made to measure. Nature Photon 3, 673–676 (2009). https://doi.org/10.1038/nphoton.2009.223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing