Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions

Abstract

Two-dimensional layered semiconductors such as MoS2 and WSe2 have attracted considerable interest in recent times. Exploring the full potential of these layered materials requires precise spatial modulation of their chemical composition and electronic properties to create well-defined heterostructures. Here, we report the growth of compositionally modulated MoS2–MoSe2 and WS2–WSe2 lateral heterostructures by in situ modulation of the vapour-phase reactants during growth of these two-dimensional crystals. Raman and photoluminescence mapping studies demonstrate that the resulting heterostructure nanosheets exhibit clear structural and optical modulation. Transmission electron microscopy and elemental mapping studies reveal a single crystalline structure with opposite modulation of sulphur and selenium distributions across the heterostructure interface. Electrical transport studies demonstrate that the WSe2–WS2 heterojunctions form lateral p–n diodes and photodiodes, and can be used to create complementary inverters with high voltage gain. Our study is an important advance in the development of layered semiconductor heterostructures, an essential step towards achieving functional electronics and optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of lateral epitaxial growth of WS2–WSe2 and MoS2–MoSe2 heterostructures.
Figure 2: AFM, Raman and photoluminescence characterization of WS2–WSe2 lateral heterostructures.
Figure 3: Structural and chemical modulation in WS2–WSe2 lateral heterostructures.
Figure 4: Growth and characterization of MoS2–MoSe2 lateral heterostructures.
Figure 5: Electrical characterization and functional devices from WS2–WSe2 lateral heterojunctions.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  2. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  3. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  4. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  5. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  6. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  7. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  8. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  9. Huang, X., Zeng, Z. Y. & Zhang, H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013).

    Article  CAS  Google Scholar 

  10. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  Google Scholar 

  11. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nature Mater. 12, 246–252 (2013).

    Article  CAS  Google Scholar 

  12. Roy, K. et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech. 8, 826–830 (2013).

    Article  CAS  Google Scholar 

  13. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  14. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

    Article  CAS  Google Scholar 

  15. Mak, K. F. et al. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).

    Article  Google Scholar 

  16. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2 . Nature Phys. 10, 130–134 (2014).

    Article  CAS  Google Scholar 

  17. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

    Article  CAS  Google Scholar 

  18. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  19. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257–261 (2014).

    Article  CAS  Google Scholar 

  20. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  21. Lopez-Sanchez, O. et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042–3048 (2014).

    Article  CAS  Google Scholar 

  22. Zhang, Y., Oka, T., Suzuki, R., Ye, J. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  CAS  Google Scholar 

  23. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

    Article  CAS  Google Scholar 

  24. Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotech. 8, 119–124 (2013).

    Article  CAS  Google Scholar 

  25. Lei, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343, 163–167 (2014).

    Article  Google Scholar 

  26. Jiong, L. et al. Order–disorder transition in a two-dimensional boron-carbon-nitride alloy. Nature Commun. 4, 3681 (2013).

    Google Scholar 

  27. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  28. Liu, K. K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  CAS  Google Scholar 

  29. Lee, Y. H. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013).

    Article  CAS  Google Scholar 

  30. Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

    Article  CAS  Google Scholar 

  31. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  32. Yu, Y. et al. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013).

    Article  Google Scholar 

  33. Zhang, Y. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7, 8963–8971 (2013).

    Article  CAS  Google Scholar 

  34. Shaw, J. C. et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 7, 511–517 (2014).

    Article  CAS  Google Scholar 

  35. Mann, J. et al. 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers. Adv. Mater. 26, 1399–1404 (2014).

    Article  CAS  Google Scholar 

  36. Li, H. et al. Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014).

    Article  CAS  Google Scholar 

  37. Schmidt, H. et al. Transport properties of monolater MoS2 grown by chemical vapor deposition. Nano. Lett. 14, 1909–1913 (2014).

    Article  CAS  Google Scholar 

  38. Ling, X. et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano. Lett. 14, 464–472 (2014).

    Article  CAS  Google Scholar 

  39. Huang, J. K. et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 14, 923–930 (2014).

    Article  Google Scholar 

  40. Tongay, S. et al. Two-dimensional semiconductor alloys: monolayer Mo1–xWxSe2 . Appl. Phys. Lett. 104, 012101 (2014).

    Article  Google Scholar 

  41. Zhou, H. et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 6, 703–711 (2013).

    Article  CAS  Google Scholar 

  42. Gutierrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2013).

    Article  CAS  Google Scholar 

  43. Zhao, W. J. et al. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2 . Nanoscale 5, 9677–9683 (2013).

    Article  CAS  Google Scholar 

  44. Zhao, W. J. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

    Article  CAS  Google Scholar 

  45. Coehoorn, R., Dijkstra, C. H. J. & Flipse, C. J. F. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35, 6195–6202 (1987).

    Article  CAS  Google Scholar 

  46. Yan, K. et al. Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nature Commun. 3, 1280 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Nanoelectronics Research Facility (NRF) at UCLA for technical support. The authors thank N.O. Weiss for preparing the schematics in Fig. 1. A.P. acknowledges support from the National Basic Research Program of China (no. 2012CB932703) and the National Natural Science Foundation of China (11374092). J.J. and R.Y. acknowledge support from the National Natural Science Foundation of China (21025521, 21221003). Y.H. acknowledges a National Institutes of Health Director's New Innovator Award Program (1DP2OD007279). X.D. acknowledges support by the National Science Foundation (CAREER award no. 0956171).

Author information

Authors and Affiliations

Authors

Contributions

X.D. designed the research. X.D.D. synthesized the WS2–WSe2 heterostructures and conducted the initial Raman, photoluminescence and TEM characterizations and data analysis. J.C.S. synthesized the MoS2–MoSe2 heterostructures and conducted the relevant Raman characterizations. C.W. and R.C. conducted the Raman characterizations, device fabrication, characterization and data analysis. Y.C. conducted the TEM studies and data analysis, A.P., H.L. and X.W. contributed to the CVD set-up. A.P., Y.T. and Q.Z. contributed to Raman and photoluminescence studies. J.J., R.Y., A.P., Y.H. and X.D. supervised the research. X.D., X.D.D. and J.C.S. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xidong Duan, Anlian Pan or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Wang, C., Shaw, J. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotech 9, 1024–1030 (2014). https://doi.org/10.1038/nnano.2014.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing