Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A biomimetic nanosponge that absorbs pore-forming toxins

Abstract

Detoxification treatments such as toxin-targeted anti-virulence therapy1,2 offer ways to cleanse the body of virulence factors that are caused by bacterial infections, venomous injuries and biological weaponry. Because existing detoxification platforms such as antisera3, monoclonal antibodies4, small-molecule inhibitors5,6 and molecularly imprinted polymers7 act by targeting the molecular structures of toxins, customized treatments are required for different diseases. Here, we show a biomimetic toxin nanosponge that functions as a toxin decoy in vivo. The nanosponge, which consists of a polymeric nanoparticle core surrounded by red blood cell membranes, absorbs membrane-damaging toxins and diverts them away from their cellular targets. In a mouse model, the nanosponges markedly reduce the toxicity of staphylococcal alpha-haemolysin (α-toxin) and thus improve the survival rate of toxin-challenged mice. This biologically inspired toxin nanosponge presents a detoxification treatment that can potentially treat a variety of injuries and diseases caused by pore-forming toxins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic and actual structures.
Figure 2: In vitro characterizations.
Figure 3: In vivo toxin neutralization.
Figure 4: In vivo detoxification.

Similar content being viewed by others

References

  1. Clatworthy, A. E., Pierson, E. & Hung, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chem. Biol. 3, 541–548 (2007).

    Article  CAS  Google Scholar 

  2. Rasko, D. A. & Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nature Rev. Drug Discov. 9, 117–128 (2010).

    Article  CAS  Google Scholar 

  3. Beghini, D. G. et al. Anti-sera raised in rabbits against crotoxin and phospholipase A2 from Crotalus durissus cascavella venom neutralize the neurotoxicity of the venom and crotoxin. Toxicon 44, 141–148 (2004).

    Article  CAS  Google Scholar 

  4. Chen, Z. et al. Potent neutralization of anthrax edema toxin by a humanized monoclonal antibody that competes with calmodulin for edema factor binding. Proc. Natl Acad. Sci. USA 106, 13487–13492 (2009).

    Article  CAS  Google Scholar 

  5. McCormick, C. C., Caballero, A. R., Balzli, C. L., Tang, A. & O'Callaghan, R. J. Chemical inhibition of alpha-toxin, a key corneal virulence factor of Staphylococcus aureus. Invest. Ophthalmol. Vis. Sci. 50, 2848–2854 (2009).

    Article  Google Scholar 

  6. Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310, 670–674 (2005).

    Article  CAS  Google Scholar 

  7. Hoshino, Y. et al. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc. Natl Acad. Sci. USA 109, 33–38 (2012).

    Article  CAS  Google Scholar 

  8. Gilbert, R. J. Pore-forming toxins. Cell Mol. Life Sci. 59, 832–844 (2002).

    Article  CAS  Google Scholar 

  9. Rosado, C. J. et al. The MACPF/CDC family of pore-forming toxins. Cell Microbiol. 10, 1765–1774 (2008).

    Article  CAS  Google Scholar 

  10. Shoham, M. Antivirulence agents against MRSA. Future Med. Chem. 3, 775–777 (2011).

    Article  CAS  Google Scholar 

  11. O'Hanley, P., Lalonde, G. & Ji, G. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect. Immun. 59, 1153–1161 (1991).

    CAS  Google Scholar 

  12. Edelson, B. T. & Unanue, E. R. Intracellular antibody neutralizes Listeria growth. Immunity 14, 503–512 (2001).

    Article  CAS  Google Scholar 

  13. Nakouzi, A., Rivera, J., Rest, R. F. & Casadevall, A. Passive administration of monoclonal antibodies to anthrolysin O prolong survival in mice lethally infected with Bacillus anthracis. BMC Microbiol. 8, 159–168 (2008).

    Article  Google Scholar 

  14. Kirkham, L. A. et al. Construction and immunological characterization of a novel nontoxic protective pneumolysin mutant for use in future pneumococcal vaccines. Infect. Immun. 74, 586–593 (2006).

    Article  CAS  Google Scholar 

  15. Andreeva-Kovalevskaya, Zh. I., Solonin, A. S., Sineva, E. V. & Ternovsky, V. I. Pore-forming proteins and adaptation of living organisms to environmental conditions. Biochemistry (Mosc) 73, 1473–1492 (2008).

    Article  CAS  Google Scholar 

  16. Bayley, H. Membrane–protein structure: piercing insights. Nature 459, 651–652 (2009).

    Article  CAS  Google Scholar 

  17. Hu, C. M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  CAS  Google Scholar 

  18. Bhakdi, S., Tranum-Jensen, J. & Sziegoleit, A. Mechanism of membrane damage by streptolysin-O. Infect. Immun. 47, 52–60 (1985).

    CAS  Google Scholar 

  19. Dempsey, C. E. The actions of melittin on membranes. Biochim. Biophys. Acta 1031, 143–161 (1990).

    Article  CAS  Google Scholar 

  20. Klainer, A. S., Madoff, M. A., Cooper, L. Z. & Weinstein, L. Staphylococcal alpha-hemolysin: detection on the erythrocyte membrane by immunofluorescence. Science 145, 714–715 (1964).

    Article  CAS  Google Scholar 

  21. Moorjani, M. et al. Nanoerythrosomes, a new derivative of erythrocyte ghost II: identification of the mechanism of action. Anticancer Res. 16, 2831–2836 (1996).

    CAS  Google Scholar 

  22. Gao, W., Langer, R. & Farokhzad, O. C. Poly(ethylene glycol) with observable shedding. Angew. Chem. Int. Ed. 49, 6567–6571 (2010).

    Article  CAS  Google Scholar 

  23. Bhakdi, S. & Tranum-Jensen, J. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 55, 733–751 (1991).

    CAS  Google Scholar 

  24. Gill, D. M. Bacterial toxins: a table of lethal amounts. Microbiol. Rev. 46, 86–94 (1982).

    CAS  Google Scholar 

  25. Watanabe, M., Tomita, T. & Yasuda, T. Membrane-damaging action of staphylococcal alpha-toxin on phospholipid-cholesterol liposomes. Biochim. Biophys. Acta 898, 257–265 (1987).

    Article  CAS  Google Scholar 

  26. Pornpattananangkul, D. et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Am. Chem. Soc. 133, 4132–4139 (2011).

    Article  CAS  Google Scholar 

  27. Leroux, J. C. Injectable nanocarriers for biodetoxification. Nature Nanotech. 2, 679–684 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation (grant no. DMR-1216461) and the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (award no. R01DK095168). B.L. is supported by a National Institutes of Health training grant (R25CA153915 ) from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. conceived and designed the experiments with C-M.H., R.F. and J.C. C-M.H., R.F., J.C. and B.L. performed all the experiments. All authors analysed and discussed the data. L.Z., C-M.H. and R.F. wrote the manuscript.

Corresponding author

Correspondence to Liangfang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, CM., Fang, R., Copp, J. et al. A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotech 8, 336–340 (2013). https://doi.org/10.1038/nnano.2013.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.54

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research