Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system

Abstract

Magnetic relaxation processes were first discussed for a crystal of paramagnetic transition ions1. It was suggested that mechanical vibrations of the crystal lattice (phonons) modulate the crystal electric field of the magnetic ion, thus inducing a ‘direct’ relaxation between two different spin states1,2,3. Direct relaxation has also been predicted for single-molecule magnets with a large spin and a high magnetic anisotropy1,4,5,6,7 and was first demonstrated in a Mn12 acetate crystal8. The spin-lattice relaxation time for such a direct transition is limited by the phonon density of states at the spin resonance1. In a three-dimensional system, such as a single-molecule magnet crystal, the phonon energy spectrum is continuous, but in a one-dimensional system, like a suspended carbon nanotube, the spectrum is discrete and can be engineered to an extremely low density of states9. An individual single-molecule magnet, coupled to a suspended carbon nanotube, should therefore exhibit extremely long relaxation times9 and the system's reduced size should result in a strong spin–phonon coupling10,11. Here, we provide the first experimental evidence for a strong spin–phonon coupling between a single molecule spin and a carbon nanotube resonator, ultimately enabling coherent spin manipulation and quantum entanglement10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rare-earth SMM.
Figure 2: Longitudinal stretching modes in CNT NEMS.
Figure 3: Strong spin–phonon coupling of a TbPc2-SMM and a CNT NEMS.
Figure 4: Nuclear spin-dependent magnetization reversal of a single TbPc2 coupled to a CNT NEMS.

Similar content being viewed by others

References

  1. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Oxford Univ. Press, 1970).

    Google Scholar 

  2. Heitler, W. & Teller, E. Time effects in the magnetic cooling method. Proc. R. Soc. Lond. A 155, 629–639 (1936).

    Article  Google Scholar 

  3. Van Vleck, J. H. Paramagnetic relaxation times for titanium and chrome alum. Phys. Rev. 57, 426–447 (1940).

    Article  CAS  Google Scholar 

  4. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  5. Villain, J., Hartman-Boutron, F., Sessoli, R. & Rettori, A. Magnetic relaxation in big magnetic molecules. Europhys. Lett. 27, 159–164 (1994).

    Article  CAS  Google Scholar 

  6. Garanin, D. A. & Chudnosvky, E. M. Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others. Phys. Rev. B 56, 011102 (1997).

    Article  CAS  Google Scholar 

  7. Leuenberger, M. & Loss, D. Spin relaxation in Mn12-acetate. Europhys. Lett. 46, 692–699 (1999).

    Article  CAS  Google Scholar 

  8. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, N. A. Magnetic bistability of a metal-ion cluster. Nature 365, 141–144 (1993).

    Article  CAS  Google Scholar 

  9. Palyi, A., Struck, P. R., Rudner, M., Flensberg, K. & Burkard, G. Spin–orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 108, 206811 (2012).

    Article  Google Scholar 

  10. Kovalev, A., Hayden, L., Bauer, G. & Tscherkovniak, Y. Macrospin tunneling and magneto-polaritons with nanomechanical interference. Phys. Rev. Lett. 106, 147203 (2011).

    Article  Google Scholar 

  11. Garanin, D. A. & Chudnovsky, E. Quantum entanglement of a tunneling spin with mechanical modes of a torsional resonator. Phys. Rev. X 1, 011005 (2011).

    Google Scholar 

  12. Laird, E., Pei, F., Tang, W., Steele, G. A. & Kouwenhoven L. P. A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 12, 193–197 (2011).

    Article  Google Scholar 

  13. Peng, H. B., Chang, C. W., Aloni, S., Yuzvinsky, T. D. & Zettl, A. Ultrahigh frequency nanotube resonator. Phys. Rev. Lett. 97, 087203 (2006).

    Article  CAS  Google Scholar 

  14. Sapmaz, S., Jarillo-Herrero, P., Blanter, Y. M., Dekker, C. & van der Zant, H. S. J. Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. Phys. Rev. Lett. 96, 026801 (2006).

    Article  CAS  Google Scholar 

  15. Huettel, A., Witkamp, B., Leijnse, M., Wegewijs, M. R. & van der Zant, H. S. J. Pumping of vibrational excitations in the Coulomb-blockade regime in a suspended carbon nanotube. Phys. Rev. Lett. 102, 225501 (2009).

    Article  Google Scholar 

  16. Leturcq, R. et al. Franck–Condon blockade in suspended carbon nanotube quantum dots. Nature Phys. 5, 327–331 (2009).

    Article  CAS  Google Scholar 

  17. Poot, M. & van der Zant, H. S. J. Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2011).

    Article  Google Scholar 

  18. Ganzhorn, M. & Wernsdorfer, W. Dynamics and dissipation induced by single electron tunneling in carbon nanotube nanoelectromechanical system. Phys. Rev. Lett. 108, 175502 (2012).

    Article  Google Scholar 

  19. Lassagne, B., Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D. & Bachthold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    Article  CAS  Google Scholar 

  20. Steele, G. et al. Strong coupling between single electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

    Article  CAS  Google Scholar 

  21. Hüttel, A. K. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    Article  Google Scholar 

  22. Lassagne, A., Garcia-Sanchez, D., Aguasca, A. & Bachtold, A. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 8, 3735–3738 (2008).

    Article  CAS  Google Scholar 

  23. Chiu, H., Hung, P., Postma, H. W. Ch. & Bockrath, M. Atomic scale mass sensing using carbon nanotube resonators. Nano Lett. 8, 4342–4346 (2008).

    Article  CAS  Google Scholar 

  24. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–556 (2008).

    Article  CAS  Google Scholar 

  25. Lassagne, B., Ugnati, D. & Respaud, M. Ultrasensitive magnetometers based on carbon nanotube mechanical resonators. Phys. Rev. Lett. 107, 130801 (2011).

    Article  CAS  Google Scholar 

  26. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  27. Heersche, H. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  CAS  Google Scholar 

  28. Zyazin, A. S. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 10, 3307–3311 (2010).

    Article  CAS  Google Scholar 

  29. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic readout of a single nuclear spin in a single molecule transistor. Nature 488, 357–360 (2012).

    Article  CAS  Google Scholar 

  30. Urdampilleta, M., Cleuziou, J-P., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Supramolecular spin valves. Nature Mater. 10, 502–506 (2011).

    Article  CAS  Google Scholar 

  31. Friedman, J. R., Sarachik, M. P., Tejada, J. & Ziolo, R. Macroscopic measurement of resonant magnetization tunnelling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996).

    Article  CAS  Google Scholar 

  32. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    Article  CAS  Google Scholar 

  33. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

    Article  CAS  Google Scholar 

  34. Takahashi, S. et al. Coherent manipulation and decoherence of S=10 single-molecule magnet. Phys. Rev. Lett. 102, 087603 (2009).

    Article  Google Scholar 

  35. Ishikawa, N., Sugita, M. & Wernsdorfer, W. Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew. Chem. Int. Ed. 44, 2931–2935 (2005).

    Article  CAS  Google Scholar 

  36. Kyatskaya, S. et al. Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 15143–15151 (2009).

    Article  CAS  Google Scholar 

  37. Lopes, M. et al. Surface-enhanced Raman signal for terbium single-molecule magnets grafted on graphene. ACS Nano 4, 7531–7536 (2010).

    Article  CAS  Google Scholar 

  38. Chudnovsky, E., Garanin, D. A. & Schilling, R. Universal mechanism of spin relaxation in solids. Phys. Rev. B 72, 094426 (2005).

    Article  Google Scholar 

  39. Ohm, C., Stampfer, C., Splettstoesser, J. & Wegewijs, M. R. Readout of carbon nanotube vibrations based on spin–phonon coupling. Appl. Phys. Lett. 100, 143103 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank E. Eyraud, D. Lepoittevin, L. Cagnon, R. Haettel, C. Hoarau, V. Reita and P. Rodiere for technical contributions and discussions, T. Fournier, T. Crozes, B. Fernandez, S. Dufresnes and G. Julie for lithography development, and J.P. Cleuziou and N.V. Nguyen for CNT CVD growth development. The authors also thank E. Bonet, C. Thirion and R. Piquerel for help with software development and M. Urdampilleta, S. Thiele, R. Vincent and F. Balestro for fruitful discussions. Samples were fabricated in the Nanofab facility of the Néel Institute. This work is partially supported by the French National Research Agency National Programme in Nanosciences and Nanotechnologies (ANR-PNANO) project MolNanoSpin (no. ANR-08-NANO-002), European Research Council Advanced Grant MolNanoSpin (no. 226558), ICT-2007.8.0 Future Emerging Technologies Open, Quantum Information Processing Specific Targeted Research Project (no. 211284 MolSpinQIP), the German Research Foundation programme TRR 88 ‘3Met’, Cible 2009, and the Nanosciences Foundation of Grenoble. M.G. thanks the Nanoscience Foundation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.G. and W.W. designed, conducted and analysed the experiments. S.K. and M.R. designed, synthesized and characterized the molecule. M.G. and W.W. co-wrote the paper.

Corresponding author

Correspondence to Wolfgang Wernsdorfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganzhorn, M., Klyatskaya, S., Ruben, M. et al. Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nature Nanotech 8, 165–169 (2013). https://doi.org/10.1038/nnano.2012.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing