Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores

Subjects

Abstract

Nanopores can be used to detect and analyse biomolecules. However, controlling the translocation speed of molecules through a pore is difficult, which limits the wider application of these sensors. Here, we show that low-power visible light can be used to control surface charge in solid-state nanopores and can influence the translocation dynamics of DNA and proteins. We find that laser light precisely focused at a nanopore can induce reversible negative surface charge densities as high as 1 C m−2, and that the effect is tunable on submillisecond timescales by adjusting the photon density. By modulating the surface charge, we can control the amount of electroosmotic flow through the nanopore, which affects the speed of translocating biomolecules. In particular, a few milliwatts of green light can reduce the translocation speed of double-stranded DNA by more than an order of magnitude and the translocation speed of small globular proteins such as ubiquitin by more than two orders of magnitude. The laser light can also be used to unclog blocked pores. Finally, we discuss a mechanism to account for the observed optoelectronic phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The photoconductive effect in solid-state nanopores.
Figure 2: Slowing down DNA and protein translocation speed with light.
Figure 3: Ionic current enhancement as a function of laser power and pore diameter.
Figure 4: Light-induced surface charge density modulates the EOF and DNA translocation speed.

Similar content being viewed by others

References

  1. Zhang, X., Ju, H. & Wang, J. Electrochemical Sensors, Biosensors and their Biomedical Applications (Elsevier, 2008).

    Google Scholar 

  2. Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nature Nanotech. 6, 615–624 (2011).

    Article  CAS  Google Scholar 

  3. Tegenfeldt, J. O. et al. The dynamics of genomic-length DNA molecules in 100-nm channels. Proc. Natl Acad. Sci. USA 101, 10979–10983 (2004).

    Article  CAS  Google Scholar 

  4. Pang, P., He, J., Park, J., Krstic, P. S. & Lindsay, S. Origin of giant ionic currents in carbon nanotube channels. ACS Nano 5, 7277–7283 (2011).

    Article  CAS  Google Scholar 

  5. Guan, W., Fan, R. & Reed, M. A. Field-effect reconfigurable nanofluidic ionic diodes. Nature Commun. 2, 506 (2011).

    Article  Google Scholar 

  6. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  7. Healy, K. Nanopore-based single-molecule DNA analysis. Nanomedicine 2, 459–481 (2007).

    Article  CAS  Google Scholar 

  8. Wanunu, M. & Meller, A. in Laboratory Manual on Single Molecules (eds Ha, T. & Selvin, P.) 395–420 (Cold Spring Harbor Press, 2008).

    Google Scholar 

  9. Wong, C. T. A. & Muthukumar, M. Polymer capture by electro-osmotic flow of oppositely charged nanopores. J. Chem. Phys. 126, 164903 (2007).

    Article  CAS  Google Scholar 

  10. He, Y., Tsutsui, M., Fan, C., Taniguchi, M. & Kawai, T. Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5, 5509–5518 (2011).

    Article  CAS  Google Scholar 

  11. Kejian, D., Weimin, S., Haiyan, Z., Xianglei, P. & Honggang, H. Dependence of zeta potential on polyelectrolyte moving through a solid-state nanopore. Appl. Phys. Lett. 94, 014101 (2009).

    Article  Google Scholar 

  12. Van Dorp, S., Keyser, U. F., Dekker, N. H., Dekker, C. & Lemay, S. G. Origin of the electrophoretic force on DNA in solid-state nanopores. Nature Phys. 5, 347–351 (2009).

    Article  CAS  Google Scholar 

  13. Firnkes, M., Pedone, D., Knezevic, J., Döblinger, M. & Rant, U. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 10, 2162–2167 (2010).

    Article  CAS  Google Scholar 

  14. Iqbal, S. M. & Bashir, R. (eds) Nanopores, Sensing and Foundamental Biological Interactions (Springer, 2011).

    Google Scholar 

  15. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotech. 5, 160–165 (2010).

    Article  CAS  Google Scholar 

  16. Nam, S-W., Rooks, M. J., Kim, K-B. & Rossnagel, S. M. Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 9, 2044–2048 (2009).

    Article  CAS  Google Scholar 

  17. Jiang, Z. & Stein, D. Charge regulation in nanopore ionic field-effect transistors. Phys. Rev. E 83, 031203 (2011).

    Article  Google Scholar 

  18. Keyser, U. F. et al. Nanopore tomography of a laser focus. Nano Lett. 5, 2253–2256 (2005).

    Article  CAS  Google Scholar 

  19. Svoboda, K. & Block, S. M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  CAS  Google Scholar 

  20. Peterman, E. J. G., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    Article  CAS  Google Scholar 

  21. Beamish, E., Kwok, H., Tabard-Cossa, V. & Godin, M. Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology 23, 405301 (2012).

    Article  Google Scholar 

  22. Talaga, D. S. & Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    Article  CAS  Google Scholar 

  23. Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nature Nanotech. 6, 253–260 (2011).

    Article  CAS  Google Scholar 

  24. Plesa, C. et al. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013).

    Article  CAS  Google Scholar 

  25. Welchman, R. L., Gordon, C. & Mayer, R. J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Rev. Mol. Cell. Biol. 6, 599–609 (2005).

    Article  CAS  Google Scholar 

  26. Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation governed by interactions with solid state nanopores. Biophys. J. 95, 4716–4725 (2008).

    Article  CAS  Google Scholar 

  27. Soni, G. V. & Dekker, C. Detection of nucleosomal substructures using solid-state nanopores. Nano Lett. 12, 3180–3186 (2012).

    Article  CAS  Google Scholar 

  28. Raillon, C. et al. Nanopore detection of single molecule RNAP–DNA transcription complex. Nano Lett. 12, 1157–1164 (2012).

    Article  CAS  Google Scholar 

  29. Ho, C. et al. Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl Acad. Sci. USA 102, 10445–10450 (2005).

    Article  CAS  Google Scholar 

  30. Hoogerheide, D. P., Garaj, S. & Golovchenko, J. A. Probing surface charge fluctuations with solid-state nanopores. Phys. Rev. Lett. 102, 256804 (2009).

    Article  Google Scholar 

  31. Smeets, R. et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006).

    Article  CAS  Google Scholar 

  32. Chen, Y., Ni, Z. & Wang, G. Electroosmotic flow in nanotubes with high surface charge densities. Nano Lett. 8, 42–48 (2008).

    Article  CAS  Google Scholar 

  33. Plecis, A., Schoch, R. B. & Renaud, P. Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 5, 1147–1155 (2005).

    Article  CAS  Google Scholar 

  34. He, Y., Tsutsui, M., Fan, C., Taniguchi, M. & Kawai, T. Gate manipulation of DNA capture into nanopores. ACS Nano 5, 8391–8397 (2011).

    Article  CAS  Google Scholar 

  35. Behrens, S. H. & Grier, D. G. The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716–6721 (2001).

    Article  CAS  Google Scholar 

  36. Wu, M. et al. Control of shape and material composition of solid-state nanopores. Nano Lett. 9, 479–484 (2009).

    Article  CAS  Google Scholar 

  37. Deshpande, S. V. & Gulari, E. Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition. J. Appl. Phys. 77, 6534–6541 (1995).

    Article  CAS  Google Scholar 

  38. Moustakas, T. D. The role of extended defects on the performance of optoelectronic devices in nitride semiconductors. Phys. Status Solidi (a) 210, 169–174 (2012).

    Article  Google Scholar 

  39. Robertson, J., Warren, W. L. & Kanicki, J. Nature of the Si and N dangling bonds in silicon nitride. J. Non-Cryst. Solids 187, 297–300 (1995).

    Article  CAS  Google Scholar 

  40. Robertson, J. & Powell, M. J. Gap states in silicon nitride. Appl. Phys. Lett. 44, 415–417 (1984).

    Article  CAS  Google Scholar 

  41. Singh, R., Molnar, R. J., Unlu, M. S. & Moustakas, T. D. Intensity dependence of photoluminescence in gallium nitride thin films. Appl. Phys. Lett. 64, 336–338 (1994).

    Article  CAS  Google Scholar 

  42. Wu, M. Y., Krapf, D., Zandbergen, M., Zandbergen, H. & Batson, P. E. Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl. Phys. Lett. 87, 113106 (2005).

    Article  Google Scholar 

  43. Venkatesan, B. M., Shah, A. B., Zuo, J-M. & Bashir, R. DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv. Funct. Mater. 20, 1266–1275 (2010).

    Article  CAS  Google Scholar 

  44. Anderson, B. N., Muthukumar, M. & Meller, A. pH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano 7, 1408–1414 (2013).

    Article  CAS  Google Scholar 

  45. Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S. & Li, J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005).

    Article  CAS  Google Scholar 

  46. Kowalczyk, S. W., Wells, D. B., Aksimentiev, A. & Dekker, C. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 12, 1038–1044 (2012).

    Article  CAS  Google Scholar 

  47. Singer, A., Rapireddy, S., Ly, D. H. & Meller, A. Electronic barcoding of a viral gene at the single-molecule level. Nano Lett. 12, 1722–1728 (2012).

    Article  CAS  Google Scholar 

  48. Shim, J. et al. Detection and quantification of methylation in DNA using solid-state nanopores. Sci. Rep. 3, 1389 (2013).

    Article  Google Scholar 

  49. Wanunu, M. et al. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 133, 486–492 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for this work from the National Institutes of Health (NHGRI grant no. R01 HG-005871), from the Marie Curie People award (GA-2010-277060, ERC) and from the Israeli Centers of Research Excellence (I-CORE) programme (Center #1902/12). The authors also thank the staff at the Harvard University Center for Nanoscale Sciences (CNS) and the Technion Electron Microscopy Center for dedicated support.

Author information

Authors and Affiliations

Authors

Contributions

N.D.F. and A.M. conceived and designed the experiments. N.D.F., D.B. and T.G. performed the experiments. A.S. drilled all pores. N.D.F., A.S., D.B., T.G. and A.M. analysed the data. N.D.F., T.D.M. and A.M. developed the model. N.D.F., A.S., D.B., T.G., T.D.M. and A.M. co-wrote the paper.

Corresponding author

Correspondence to Amit Meller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Fiori, N., Squires, A., Bar, D. et al. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores. Nature Nanotech 8, 946–951 (2013). https://doi.org/10.1038/nnano.2013.221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing