Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual-gated bilayer graphene hot-electron bolometer

Abstract

Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers—devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light—because its small electron heat capacity and weak electron–phonon coupling lead to large light-induced changes in electron temperature. Here, we demonstrate a hot-electron bolometer made of bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The bolometer exhibits a noise-equivalent power (33 fW Hz–1/2 at 5 K) that is several times lower, and intrinsic speed (>1 GHz at 10 K) three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bilayer graphene device and typical optoelectronic response.
Figure 2: Dependencies of R and ΔV on Vtg and Vbg.
Figure 3: Comparison of photoresponse and electrical heating of DGBLG at charge neutrality with D̄ = −0.65 V nm−1.
Figure 4: Electrical heating of DGBLG at charge neutrality with D̄ = 0.55 V nm−1.
Figure 5: Response speed of DGBLG HEB.

Similar content being viewed by others

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  2. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  3. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  4. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  5. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

    Article  CAS  Google Scholar 

  6. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  7. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    Article  CAS  Google Scholar 

  8. Novoselov, K. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  9. Zhang, Y., Tan, Y., Stormer, H. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  10. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  11. Mak, K. F., Sfeirb, M. Y., Misewich, J. A. & Heinz, T. F. The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc. Natl Acad. Sci. USA 107, 14999–15004 (2010).

    Article  Google Scholar 

  12. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  CAS  Google Scholar 

  13. Kalugin, N. G. et al. Graphene-based quantum Hall effect infrared photodetector operating at liquid nitrogen temperatures. Appl. Phys. Lett. 99, 013504 (2011).

    Article  Google Scholar 

  14. Viljas, J. K. & Heikkilä, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    Article  Google Scholar 

  15. Oostinga, J. B., Heersche, H. B., Liu, X. L., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008).

    Article  CAS  Google Scholar 

  16. Zhou, K. & Zhu, J. Transport in gapped bilayer graphene: the role of potential fluctuations. Phys. Rev. B 82, 081407(R) (2010).

    Article  Google Scholar 

  17. Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

    Article  Google Scholar 

  18. Yan, J. & Fuhrer, M. S. Charge transport in dual gated bilayer graphene with Corbino geometry. Nano Lett. 10, 4521–4525 (2010).

    Article  CAS  Google Scholar 

  19. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  20. Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).

    Article  Google Scholar 

  21. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    Article  CAS  Google Scholar 

  22. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  CAS  Google Scholar 

  23. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  24. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  25. Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  26. Skidmore, J. T., Gildemeister, J., Lee, A. T., Myers, M. J. & Richards, P. L. Superconducting bolometer for far-infrared Fourier transform spectroscopy. Appl. Phys. Lett. 82, 469–471 (2003).

    Article  CAS  Google Scholar 

  27. Richards, P. L. & McCreight, C. R. Infrared detectors for astrophysics. Phys. Today 58, 41–47 (February 2005).

    Article  CAS  Google Scholar 

  28. Tse, W-K., Hwang, E. H. & Das Sarma, S. Ballistic hot electron transport in graphene. Appl. Phys. Lett. 93, 023128 (2008).

    Article  Google Scholar 

  29. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    Article  Google Scholar 

  30. Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  Google Scholar 

  31. Wang, H. N. et al. Ultrafast relaxation dynamics of hot optical phonons in graphene. Appl. Phys. Lett. 96, 081917 (2010).

    Article  Google Scholar 

  32. Hale, P. J., Hornett, S. M., Moger, J., Horsell, D. W. & Hendry, E. Hot phonon decay in supported and suspended exfoliated graphene. Phys. Rev. B 83, 121404(R) (2011).

    Article  Google Scholar 

  33. Chatzakis, I., Yan, H., Song, D., Berciaud, S. & Heinz, T. F. Temperature dependence of the anharmonic decay of optical phonons in carbon nanotubes and graphite. Phys. Rev. B 83, 205411 (2011).

    Article  Google Scholar 

  34. Stephens, R. B. Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids. Phys. Rev. B 8, 2896–2905 (1973).

    Article  CAS  Google Scholar 

  35. Chen, Z., Jang, W., Bao, W., Lau, C. N. & Dames, C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 95, 161910 (2009).

    Article  Google Scholar 

  36. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  CAS  Google Scholar 

  37. Yan, J., Henriksen, E. A., Kim, P. & Pinczuk, A. Observation of anomalous phonon softening in bilayer graphene. Phys. Rev. Lett. 101, 136804 (2008).

    Article  Google Scholar 

  38. Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  Google Scholar 

  39. Zhang, L. M. et al. Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Phys. Rev. B 78, 235408 (2008).

    Article  Google Scholar 

  40. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Supercollisions and the bottleneck for electron-lattice cooling in graphene. Preprint at http://arXiv:1111.4678v1 (2011).

  41. Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1–24 (1994).

    Article  CAS  Google Scholar 

  42. Nishioka, N. S., Richards, P. L. & Woody, D. P. Composite bolometers for submillimeter wavelengths. Appl. Opt. 17, 1562–1567 (1978).

    Article  CAS  Google Scholar 

  43. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  CAS  Google Scholar 

  44. Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nature Nanotech. 3, 496–500 (2008).

    Article  CAS  Google Scholar 

  45. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    Article  CAS  Google Scholar 

  46. Velasco, J. Jr et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nature Nanotech. 7, 156–160 (2012).

    Article  CAS  Google Scholar 

  47. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    Article  CAS  Google Scholar 

  48. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Preprint at http://arXiv:1112.1380 (2011).

  49. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. http://dx.doi.org/10.1021/nl204512x (2012).

Download references

Acknowledgements

The authors thank J. Melngailis, D. E. Prober, H. Moseley and A. F. Heinz for discussions. This work was supported by IARPA, the ONR MURI programme and the NSF (grants DMR-0804976 and DMR-1105224) and in part by the NSF MRSEC (grant DMR-0520471). J.A.E. and H.M.M. acknowledge the support of the NSF.

Author information

Authors and Affiliations

Authors

Contributions

M.S.F. and H.D.D. conceived the project. J.Y. fabricated the devices and performed the transport measurements. M.H.K., J.Y., A.B.S. and G.S.J. conducted the photoresponse experiments. J.A.E. and H.M.M. assisted in the pump–probe measurements. J.Y., M.H.K., M.S.F. and H.D.D. analysed data and wrote the manuscript. All authors discussed and contributed to writing the manuscript.

Corresponding author

Correspondence to M. S. Fuhrer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Kim, MH., Elle, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech 7, 472–478 (2012). https://doi.org/10.1038/nnano.2012.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing