Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions

Abstract

Charge transport across metal–molecule interfaces has an important role in organic electronics1. Typically, chemical link groups such as thiols2 or amines3 are used to bind organic molecules to metal electrodes in single-molecule circuits, with these groups controlling both the physical structure and the electronic coupling at the interface. Direct metal–carbon coupling has been shown through C60, benzene and π-stacked benzene4,5,6,7, but ideally the carbon backbone of the molecule should be covalently bonded to the electrode without intervening link groups. Here, we demonstrate a method to create junctions with such contacts. Trimethyl tin (SnMe3)-terminated polymethylene chains are used to form single-molecule junctions with a break-junction technique2,3. Gold atoms at the electrode displace the SnMe3 linkers, leading to the formation of direct Au–C bonded single-molecule junctions with a conductance that is 100 times larger than analogous alkanes with most other terminations. The conductance of these Au–C bonded alkanes decreases exponentially with molecular length, with a decay constant of 0.97 per methylene, consistent with a non-resonant transport mechanism. Control experiments and ab initio calculations show that high conductances are achieved because a covalent Au–C sigma (σ) bond is formed. This offers a new method for making reproducible and highly conducting metal–organic contacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductance data for SnMe3-linked alkanes.
Figure 2: Conductance histogram for SnMe3- and Au-PPh3-terminated compounds.
Figure 3: Calculated geometry and transmission.

Similar content being viewed by others

References

  1. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  CAS  Google Scholar 

  2. Xu, B. Q. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  Google Scholar 

  3. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  Google Scholar 

  4. Kiguchi, M. et al. Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008).

    Article  CAS  Google Scholar 

  5. Kaneko, S., Nakazumi, T. & Kiguchi, M. Fabrication of a well-defined single benzene molecule junction using Ag electrodes. J. Phys. Chem. Lett. 1, 3520–3523 (2010).

    Article  CAS  Google Scholar 

  6. Schneebeli, S. T. et al. Single-molecule conductance through multiple π−π-stacked benzene rings determined with direct electrode-to-benzene ring connections. J. Am. Chem. Soc. 133, 2136–2139 (2011).

    Article  CAS  Google Scholar 

  7. Martin, C. A. et al. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    Article  CAS  Google Scholar 

  8. Millar, D., Venkataraman, L. & Doerrer, L. H. Efficacy of Au–Au contacts for scanning tunneling microscopy molecular conductance measurements. J. Phys. Chem. C 111, 17635–17639 (2007).

    Article  CAS  Google Scholar 

  9. Bulten, E. J. & Budding, H. A. Synthesis of small-ring monostannacycloalkanes. J. Organomet. Chem. 110, 167–174 (1976).

    Article  CAS  Google Scholar 

  10. Kamenetska, M. et al. Formation and evolution of single-molecule junctions. Phys. Rev. Lett. 102, 126803 (2009).

    Article  CAS  Google Scholar 

  11. Hines, T. et al. Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. J. Am. Chem. Soc. 132, 11658–11664 (2010).

    Article  CAS  Google Scholar 

  12. Hybertsen, M. S. et al. Amine-linked single-molecule circuits: systematic trends across molecular families. J. Phys. Condens. Matter 20, 374115 (2008).

    Article  Google Scholar 

  13. Li, C. et al. Charge transport in single Au vertical bar alkanedithiol vertical bar Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318–326 (2008).

    Article  CAS  Google Scholar 

  14. Akkerman, H. B. & de Boer, B. Electrical conduction through single molecules and self-assembled monolayers. J. Phys. Condens. Matter 20, 013001 (2008).

    Article  Google Scholar 

  15. Park, Y. S. et al. Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007).

    Article  CAS  Google Scholar 

  16. Tomfohr, J. K. & Sankey, O. F. Complex band structure, decay lengths, and Fermi level alignment in simple molecular electronic systems. Phys. Rev. B 65, 245105 (2002).

    Article  Google Scholar 

  17. Bennett, M. A., Bhargava, S. K., Hockless, D. C. R., Welling, L. L. & Willis, A. C. Dinuclear cycloaurated complexes containing bridging (2-diphenylphosphino)phenylphosphine and (2-diethylphosphino)phenylphosphine, C6H4PR2 (R=Ph, Et). Carbon–carbon bond formation by reductive elimination at a gold(II)−gold(II) center. J. Am. Chem. Soc. 118, 10469–10478 (1996).

    Article  CAS  Google Scholar 

  18. Yanson, A. I., Bollinger, G. R., van den Brom, H. E., Agrait, N. & van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).

    Article  CAS  Google Scholar 

  19. Porter, K. A., Schier, A. & Schmidbaur, H. in Perspectives in Organometallic Chemistry (eds Steele, B. R. & Screttas, C. G.) 74–85 (Royal Society of Chemistry, 2003).

    Google Scholar 

  20. Parameswaran, R. et al. Reliable formation of single molecule junctions with air-stable diphenylphosphine linkers. J. Phys. Chem. Lett. 1, 2114–2119 (2010).

    Article  CAS  Google Scholar 

  21. Guohui, M. et al. Low-bias conductance of single benzene molecules contacted by direct Au–C and Pt–C bonds. Nanotechnology 21, 495202 (2010).

    Article  Google Scholar 

  22. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  23. Jaguar v7.5 (Schrodinger LLC, 2008).

  24. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  25. Brandbyge, M., Mozos, J. L., Ordejon, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  26. Koentopp, M., Burke, K. & Evers, F. Zero-bias molecular electronics: exchange-correlation corrections to Landauer's formula. Phys. Rev. B 73, 121403 (2006).

    Article  Google Scholar 

  27. Thygesen, K. S. & Rubio, A. Renormalization of molecular quasiparticle levels at metal–molecule interfaces: trends across binding regimes. Phys. Rev. Lett. 102, 046802 (2009).

    Article  Google Scholar 

  28. Delaney, P. & Greer, J. C. Correlated electron transport in molecular electronics. Phys. Rev. Lett. 93, 036805 (2004).

    Article  CAS  Google Scholar 

  29. Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal–molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    Article  CAS  Google Scholar 

  30. Quek, S. Y. et al. Amine–gold linked single-molecule circuits: experiment and theory. Nano Lett. 7, 3477–3482 (2007).

    Article  CAS  Google Scholar 

  31. Ma, G. H. et al. Low-bias conductance of single benzene molecules contacted by direct Au–C and Pt–C bonds. Nanotechnology 21, 495202 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the Nanoscale Science and Engineering Initiative of the National Science Foundation (NSF; CHE-0641523), the New York State Office of Science, Technology, and Academic Research (NYSTAR) and an NSF Career Award to L.V. (CHE-07-44185). This work was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the Office of Basic Energy Sciences of the US Department of Energy (DOE; DE-AC02-98CH10886). This work was also supported in part by the DOE Energy Frontier Research Centers programme (EFRC; DE-SC0001085).

Author information

Authors and Affiliations

Authors

Contributions

Z.L.C., R.S., S.S. and W.C. synthesized the compounds. J.R.W. performed the experiments and data analysis. H.V. carried out all calculations. M.S.H., R.B. and L.V. conceived and designed the experiments and calculations, and co-wrote the paper.

Corresponding authors

Correspondence to M. S. Hybertsen, R. Breslow or L. Venkataraman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 734 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, ZL., Skouta, R., Vazquez, H. et al. In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nature Nanotech 6, 353–357 (2011). https://doi.org/10.1038/nnano.2011.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.66

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing