Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles

Abstract

In vitro experiments typically measure the uptake of nanoparticles by exposing cells at the bottom of a culture plate to a suspension of nanoparticles, and it is generally assumed that this suspension is well-dispersed. However, nanoparticles can sediment, which means that the concentration of nanoparticles on the cell surface may be higher than the initial bulk concentration, and this could lead to increased uptake by cells. Here, we use upright and inverted cell culture configurations to show that cellular uptake of gold nanoparticles depends on the sedimentation and diffusion velocities of the nanoparticles and is independent of size, shape, density, surface coating and initial concentration of the nanoparticles. Generally, more nanoparticles are taken up in the upright configuration than in the inverted one, and nanoparticles with faster sedimentation rates showed greater differences in uptake between the two configurations. Our results suggest that sedimentation needs to be considered when performing in vitro studies for large and/or heavy nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and gold nanoparticles used in this study.
Figure 2: Uptake values of various types of gold nanoparticles for cells positioned in upright and inverted configurations.
Figure 3: Comparison of the disparity in cellular uptake between upright and inverted configurations for different types of gold nanoparticles.
Figure 4: Different zones involved in cellular uptake of gold nanoparticles and the two factors affecting the uptake process.
Figure 5: Disparity in uptake between upright and inverted configurations as a function of the ratio of sedimentation and diffusion velocities.

Similar content being viewed by others

References

  1. Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008).

    Article  CAS  Google Scholar 

  2. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Rel. 65, 271–284 (2000).

    Article  CAS  Google Scholar 

  3. Sawant, R. M. et al. ‘SMART’ drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconj. Chem. 17, 943–949 (2006).

    Article  CAS  Google Scholar 

  4. Rosler, A., Vandermeulen, G. W. M. & Klok, H-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 53, 95–108 (2001).

    Article  CAS  Google Scholar 

  5. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  6. Skrabalak, S. E. et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008).

    Article  CAS  Google Scholar 

  7. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  CAS  Google Scholar 

  8. Murphy, C. J. et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).

    Article  CAS  Google Scholar 

  9. Zerda, A. D. L. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotech. 3, 557–562 (2008).

    Article  Google Scholar 

  10. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  11. Sun, C., Lee, J. S. H. & Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265 (2008).

    Article  CAS  Google Scholar 

  12. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    Article  CAS  Google Scholar 

  13. Teeguarden, J. G., Hinderliter, P. M., Orr, G., Thrall, B. D. & Pounds, J. G. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95, 300–312 (2007).

    Article  CAS  Google Scholar 

  14. Lison, D. et al. Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol. Sci. 104, 155–162 (2008).

    Article  CAS  Google Scholar 

  15. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech. 3, 145–150 (2008).

    Article  CAS  Google Scholar 

  16. Alivisatos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

    Article  CAS  Google Scholar 

  17. Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrinand caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).

    Article  CAS  Google Scholar 

  18. Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003).

    Article  CAS  Google Scholar 

  19. Prabha, S., Zhou, W-Z., Panyam, J. & Labhasetwar, V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm. 244, 105–115 (2002).

    Article  CAS  Google Scholar 

  20. Cho, E. C., Au, L., Zhang, Q. & Xia, Y. The effects of size, shape, and surface functional group old nanoparticles on their adsorption and internalization by cells. Small 6, 517–522 (2010).

    Article  CAS  Google Scholar 

  21. Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).

    Article  CAS  Google Scholar 

  22. Verma, A. & Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small 6, 12–21 (2010).

    Article  CAS  Google Scholar 

  23. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater. 7, 588–595 (2008).

    Article  CAS  Google Scholar 

  24. Leroueil, P. R. et al. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc. Chem. Res. 40, 335–342 (2007).

    Article  CAS  Google Scholar 

  25. Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 9, 1080–1084 (2009).

    Article  CAS  Google Scholar 

  26. Zorko, M. & Langel, U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev. 57, 529–545 (2005).

    Article  CAS  Google Scholar 

  27. Sudimack, J. & Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41, 147–162 (2000).

    Article  CAS  Google Scholar 

  28. Sager, T. M. et al. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1, 118–129 (2007).

    Article  CAS  Google Scholar 

  29. Xu, C., Tung, G. A. & Sun, S. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem. Mater. 20, 4167–4169 (2008).

    Article  CAS  Google Scholar 

  30. Hinderliter, P. M. et al. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Particle Fibre Toxicol. 7, 36–54 (2010).

    Article  CAS  Google Scholar 

  31. Kong, H. J. et al. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nature Mater. 4, 460–464 (2005).

    Article  CAS  Google Scholar 

  32. Alkilany, A. M. et al. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5, 701–708 (2009).

    Article  CAS  Google Scholar 

  33. Lynch, I. et al. The nanoparticle–protein complex as a biological entity: a complex fluids and surface science challenge for the 21st century. Adv. Colloid Interface Sci. 134–135, 167–174 (2007).

    Article  Google Scholar 

  34. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  35. Feldman, K., Ha1hner, G., Spencer, N. D., Harder, P. & Grunze, M. Probing resistance to protein adsorption of oligo(ethylene glycol)-terminated self-assembled monolayers by scanning force microscopy. J. Am. Chem. Soc. 121, 10134–10141 (1999).

    Article  CAS  Google Scholar 

  36. Sigal, G. B., Mrksich, M. & Whitesides, G. M. Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 120, 3464–3473 (1998).

    Article  CAS  Google Scholar 

  37. Horbett, T. A. & Brash, J. L. (eds) Proteins at Interfaces II 396 (American Chemical Society, 1995).

    Book  Google Scholar 

  38. Cho, E. C., Liu, Y. & Xia, Y. A simple spectroscopic method for differentiating cellular uptakes of gold nanospheres and nanorods from their mixtures. Angew. Chem. Int. Ed. 49, 1976–1980 (2010).

    Article  CAS  Google Scholar 

  39. Leckband, D. Nanomechanics of adhesion proteins. Curr. Opin. Struct. Biol. 14, 524–530 (2004).

    Article  CAS  Google Scholar 

  40. Dammer, U. et al. Specific antigen/antibody interactions measured by force microscopy. Biophy. J. 70, 2437–2441 (1996).

    Article  CAS  Google Scholar 

  41. Allen, S. et al. Detection of antigen–antibody binding events with the atomic force microscope. Biochemistry 36, 7457–7463 (1997).

    Article  CAS  Google Scholar 

  42. Tha, S. P., Shuster, J. & Goldsmith, H. L. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup. Biophys. J. 50, 1117–1126 (1986).

    Article  CAS  Google Scholar 

  43. Vasir, J. K. & Labhasetwar, V. Quantification of the force of nanoparticle–cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29, 4244–4252 (2008).

    Article  CAS  Google Scholar 

  44. Hiemenz, P. C. & Rajagopalan, R. Principles of Colloid and Surface Chemistry 94 (Marcel Dekker, 1997).

    Book  Google Scholar 

  45. Brown, P. H. & Schuck, P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 90, 4651–4661 (2006).

    Article  CAS  Google Scholar 

  46. Sperling, R. A. et al. Size determination of (bio)conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J. Phys. Chem. 111, 11552–11559 (2007).

    Article  CAS  Google Scholar 

  47. Shim, J. et. al. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J. Control. Rel. 97, 477–484 (2004).

    Article  CAS  Google Scholar 

  48. Sonavane, G. et al. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Sur. B 65, 1–10 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.X. thanks the National Institutes of Health (NIH) for a 2006 Director's Pioneer Award (DP1 OD000798) and a grant (1R01 CA138527). E.C.C. was also partially supported by a fellowship from the Korea Research Foundation (KRF-2007-357-D00070). Part of the work was performed at the Nano Research Facility, a member of the National Nanotechnology Infrastructure Network (NNIN), supported by the National Science Foundation (NSF) under award ECS-0335765.

Author information

Authors and Affiliations

Authors

Contributions

E.C.C. and Y.X. conceived and designed the experiments. E.C.C. performed the experiments, analysed the data and prepared the manuscript. Y.X. revised the manuscript. Q.Z. synthesized the nanocages.

Corresponding author

Correspondence to Younan Xia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, E., Zhang, Q. & Xia, Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nature Nanotech 6, 385–391 (2011). https://doi.org/10.1038/nnano.2011.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.58

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research