Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrasensitive detection and characterization of biomolecules using superchiral fields

Abstract

The spectroscopic analysis of large biomolecules is important in applications such as biomedical diagnostics and pathogen detection1,2, and spectroscopic techniques can detect such molecules at the nanogram level or lower. However, spectroscopic techniques have not been able to probe the structure of large biomolecules with similar levels of sensitivity. Here, we show that superchiral electromagnetic fields3, generated by the optical excitation of plasmonic planar chiral metamaterials4,5, are highly sensitive probes of chiral supramolecular structure. The differences in the effective refractive indices of chiral samples exposed to left- and right-handed superchiral fields are found to be up to 106 times greater than those observed in optical polarimetry measurements, thus allowing picogram quantities of adsorbed molecules to be characterized. The largest differences are observed for biomolecules that have chiral planar sheets, such as proteins with high β-sheet content, which suggests that this approach could form the basis for assaying technologies capable of detecting amyloid diseases and certain types of viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes induced in the chiral plasmonic resonances of the PCM are readily detected using CD spectroscopy.
Figure 2: Finite element modelling of the local electromagnetic fields around the PCMs.
Figure 3: Values of ΔΔλ and ΔλAV induced by the adsorption of chiral materials.

Similar content being viewed by others

References

  1. Fasman, G. D. (ed.) Circular Dichroism and Conformational Analysis of Biomolecules (Plenum Press, 1996).

    Book  Google Scholar 

  2. Barron, L. D. Molecular Light Scattering and Optical Activity 2nd edn (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  3. Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).

    Article  Google Scholar 

  4. Schwanecke, A. S. et al. Broken time reversal of light interaction with planar chiral nanostructures. Phys. Rev. Lett. 91, 247404 (2003).

    Article  CAS  Google Scholar 

  5. Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).

    Article  Google Scholar 

  6. Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

    Article  CAS  Google Scholar 

  7. Zhang, S., Park, Y. S., Li, J. S., Zhang, W. L. & Zhang, X. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009).

    Article  Google Scholar 

  8. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polariser. Science 325, 1513–1515 (2009).

    Article  CAS  Google Scholar 

  9. Konishi, K., Sugimoto, T., Bai, B., Svirko, Y. & Kuwata-Gonokami, M. Effects of surface plasmon resonances on the optical activity of chiral metal nanogratings. Opt. Exp. 15, 9575–9583 (2007).

    Article  CAS  Google Scholar 

  10. Willets, K. A. & van Duyne, R. P. Localised surface plasmon resonance spectroscopy and sensing. Ann. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  11. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  12. Hall, W. P. et al. Calcium-modulated plasmonic switch. J. Am. Chem. Soc. 130, 5836–5837 (2008).

    Article  CAS  Google Scholar 

  13. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  CAS  Google Scholar 

  14. Haes, A. J. & van Duyne, R. P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596–10604 (2002).

    Article  CAS  Google Scholar 

  15. Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N. & Yee, S. S. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed film. Langmuir 14, 5636–5648 (1998).

    Article  CAS  Google Scholar 

  16. Zhao, X., Zhao, R. G. & Yang, W. S. Self-assembly of L-tryptophan on the Cu(001) surface. Langmuir 18, 433–438 (2002).

    Article  CAS  Google Scholar 

  17. Berman, H. M., Henrick, K. & Nakamura, H. Announcing the worldwide protein data bank. Nat. Struct. Biol. 10, 980–980 (2003).

    Article  CAS  Google Scholar 

  18. Malmsten, M. Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology Ch. 1 (Marcel Dekker, 2000).

    Google Scholar 

  19. Mulligan, A. et al. Going beyond the physical: instilling chirality onto the electronic structure of a metal. Angew. Chem. Int. Ed. 44, 1830–1833 (2005).

    Article  CAS  Google Scholar 

  20. Bovet, N., McMillan, N., Gadegaard, N. & Kadodwala, M. Supramolecular assembly facilitating adsorbate-induced chiral electronic states. J. Phys. Chem. B 11, 10005–10011 (2007).

    Article  Google Scholar 

  21. Gautier, C. & Burgi, T. Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection and optical activity in the UV-vis and infrared. J. Am. Chem. Soc. 128, 11079–11087 (2006).

    Article  CAS  Google Scholar 

  22. Lieberman, I., Shemer, G., Fried, T., Kosower, E. M. & Markovich, G. Plasmon-resonance-enhanced absorption and circular dichroism. Angew. Chem. Int. Ed. 47, 4833–4857 (2008).

    Article  Google Scholar 

  23. Baev, A., Samoc, M., Prasad, P. N., Krykunov, M. & Autschbach, J. A quantum chemical approach to the design of chiral negative index materials. Opt. Express 15, 5730–5741 (2007).

    Article  CAS  Google Scholar 

  24. Arnebrant, T., Barton, K. & Nylander, T. Adsorption of α-lactalbumin and β-lactoglobulin on metal surfaces versus temperature. J. Coll. Int. Sci. 119, 383–390 (1987).

    Article  CAS  Google Scholar 

  25. Eloffsson, U. M., Paulsson, M. A., Sellers, P. & Arnebrant, T. Adsorption during heat treatment related to the thermal unfolding aggregation of β-lactoglobulin A and B. J. Coll. Int. Sci. 183, 408–415 (1996).

    Article  Google Scholar 

  26. Efrima, A. Raman optical activity of molecules adsorbed on metal surfaces: theory. J. Chem. Phys. 83, 1356–1362 (1985).

    Article  CAS  Google Scholar 

  27. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1985).

    Google Scholar 

  28. Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry Vol. 2, Ch. 8 (W. H. Freeman, 1980).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC), Biotechnology and Biological Sciences Research Council (BBSRC), Medical Research Council (MRC), Diamond Light Source Ltd and the University of Glasgow. The authors also thank the technical support staff of the James Watt Nanofabrication Centre (University of Glasgow).

Author information

Authors and Affiliations

Authors

Contributions

M.K. conceived and designed the experiments. T.C., J.J., M.P. and S.K. performed the experiments. R.V.M. and E.H. performed numerical simulations. J.J. and N.G. fabricated the PCMs. E.H., L.D.B. and M.K. analysed the data. A.L. and S.M.K. contributed materials/analysis tools. E.H., A.L., S.M.K., N.G., L.D.B. and M.K. co-wrote the paper.

Corresponding author

Correspondence to M. Kadodwala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendry, E., Carpy, T., Johnston, J. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotech 5, 783–787 (2010). https://doi.org/10.1038/nnano.2010.209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.209

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research