Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles

Abstract

It is now known that nanoparticles, when exposed to biological fluid, become coated with proteins and other biomolecules to form a ‘protein corona’1. Recent systematic studies have identified various proteins that can make up this corona, but these nanoparticle–protein interactions are still poorly understood, and quantitative studies to characterize them are few in number. Here, we have quantitatively analysed the adsorption of human serum albumin onto small (10–20 nm in diameter) polymer-coated FePt and CdSe/ZnS nanoparticles by using fluorescence correlation spectroscopy. The protein corona forms a monolayer with a thickness of 3.3 nm. Proteins bind to the negatively charged nanoparticles with micromolar affinity, and time-resolved fluorescence quenching experiments show that they reside on the particle for 100 s. These new findings deepen our quantitative understanding of the protein corona, which is of utmost importance in the safe application of nanoscale objects in living organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of HSA and the protein corona.
Figure 2: Examples of FCS autocorrelation functions of polymer-coated FePt nanoparticles in the absence and presence of HSA.
Figure 3: Association of HSA to polymer-coated FePt nanoparticles measured by FCS.
Figure 4: Kinetic studies of HSA association to polymer-coated FePt nanoparticles.

Similar content being viewed by others

References

  1. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  Google Scholar 

  2. Scher, E. C., Manna, L. & Alivisatos, A. P. Shape control and applications of nanocrystals. Phil. Trans. R. Soc. Lond. A 361, 241–257 (2002).

    Article  Google Scholar 

  3. Kudera, S. et al. Synthesis and perspectives of complex crystaline nano-structures. Phys. Stat. Sol. (a) 203, 1329–1336 (2006).

    Article  CAS  Google Scholar 

  4. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    Article  CAS  Google Scholar 

  5. Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nature Biotechnol. 21, 1166–1170 (2003).

    Article  CAS  Google Scholar 

  6. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  7. Dabbousi, B. O. et al. (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  8. Pellegrino, T. et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4, 703–707 (2004).

    Article  CAS  Google Scholar 

  9. Lin, C. A. et al. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4, 334–341 (2008).

    Article  CAS  Google Scholar 

  10. Fernandez-Arguelles, M. T. et al. Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes. Nano Lett. 7, 2613–2617 (2007).

    Article  Google Scholar 

  11. Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41–46 (2003).

    Article  CAS  Google Scholar 

  12. He, X. M. & Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992).

    Article  CAS  Google Scholar 

  13. Lamb, D. C., Schenk, A., Röcker, C., Scalfi-Happ, C. & Nienhaus, G. U. Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys. J. 79, 1129–1138 (2000).

    Article  CAS  Google Scholar 

  14. Maiti, S., Haupts, U. & Webb, W. W. Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc. Natl Acad. Sci. USA 94, 11753–11757 (1997).

    Article  CAS  Google Scholar 

  15. Rigler, R. & Elson, E. S. (eds) Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, 2001).

    Book  Google Scholar 

  16. Thompson, N. L. in Topics in Fluorescence Spectroscopy Vol. 1 (ed. Lakowicz, J. R.) 337–378 (Plenum Press, 1991).

  17. Ferrer, M. L., Duchowicz, R., Carrasco, B., de la Torre, J. G. & Acuna, A. U. The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study. Biophys. J. 80, 2422–2430 (2001).

    Article  CAS  Google Scholar 

  18. Kohlrausch, R. Theorie des elektrischen Rueckstandes der Leidner Flasche. Pogg. Ann. Phys. Chem. 91, 56–82 (1854).

    Article  Google Scholar 

  19. Cedervall, T. et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem. Int. Ed. 46, 5754–5756 (2007).

    Article  CAS  Google Scholar 

  20. Schenk, A., Ivanchenko, S., Röcker, C., Wiedenmann, J. & Nienhaus, G. U. Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. Biophys. J. 86, 384–394 (2004).

    Article  CAS  Google Scholar 

  21. Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl Acad. Sci. USA 101, 15905–15910 (2004).

    Article  CAS  Google Scholar 

  22. Dertinger, T. et al. Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8, 433–443 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Center for Functional Nanostructures (CFN) and Schwerpunktprogramm (SPP) 1313, grants NI291/7 and PA794/4.

Author information

Authors and Affiliations

Authors

Contributions

C.R. and G.U.N. conceived and designed the experiments. C.R. and M.P. performed the experiments. C.R. and M.P. analysed the data. F.Z. and W.P. contributed materials. C.R., W.P. and G.U.N. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to G. Ulrich Nienhaus.

Supplementary information

Supplementary information

Supplementary information (PDF 567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röcker, C., Pötzl, M., Zhang, F. et al. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotech 4, 577–580 (2009). https://doi.org/10.1038/nnano.2009.195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing