Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films

Abstract

The properties of water at the nanoscale are crucial in many areas of biology, but the confinement of water molecules in sub-nanometre channels in biological systems has received relatively little attention. Advances in nanotechnology make it possible to explore the role played by water molecules in living systems, potentially leading to the development of ultrasensitive biosensors. Here we show that the adsorption of water by a self-assembled monolayer of single-stranded DNA on a silicon microcantilever can be detected by measuring how the tension in the monolayer changes as a result of hydration. Our approach relies on the microcantilever bending by an amount that depends on the tension in the monolayer. In particular, we find that the tension changes dramatically when the monolayer interacts with either complementary or single mismatched single-stranded DNA targets. Our results suggest that the tension is mainly governed by hydration forces in the channels between the DNA molecules and could lead to the development of a label-free DNA biosensor that can detect single mutations. The technique provides sensitivity in the femtomolar range that is at least two orders of magnitude better than that obtained previously with label-free nanomechanical biosensors and with label-dependent microarrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydration dependence of the surface stress of densely packed self-assembled ssDNA monolayers.
Figure 2: Effect of hybridization on the surface stress versus relative humidity relationship.
Figure 3: Role of the electrostatic interactions: immobilization of ssPNA probes.
Figure 4: Hydration-induced surface stress as a function of hybridization time.
Figure 5: Specificity and sensitivity of the hydration-based DNA nanomechanosensor.

Similar content being viewed by others

References

  1. Israelachvili, J. & Wennerstrom, H. Role of hydration and water structure in biological and colloidal interactions. Nature 379, 219–225 (1996).

    Article  CAS  Google Scholar 

  2. Petrovykh, D. Y., et al. Nucleobase orientation and ordering in films of single-stranded DNA on gold. J. Am. Chem. Soc. 128, 2–3 (2006).

    Article  CAS  Google Scholar 

  3. Petrovykh, D. Y., Kimura-Suda, H., Whitman, L. J. & Tarlov, M. J. Quantitative analysis and characterization of DNA immobilized on gold. J. Am. Chem. Soc. 125, 5219–5226 (2003).

    Article  CAS  Google Scholar 

  4. Shu, W. et al. DNA molecular motor driven micromechanical cantilever arrays. J. Am. Chem. Soc. 127, 17054–17060 (2005).

    Article  CAS  Google Scholar 

  5. Thundat, T., Wachter, E. A., Sharp, S. L. & Warmack, R. J. Detection of mercury vapor using resonating microcantilevers. Appl. Phys. Lett. 66, 1695–1697 (1995).

    Article  CAS  Google Scholar 

  6. Lavrik, N. V., Sepaniak, M. J. & Datskos, P. G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75, 2229–2253 (2004).

    Article  CAS  Google Scholar 

  7. Raiteri, R., Grattarola, M., Butt, H.-J. & Skládal, P. Micromechanical cantilever-based biosensors. Sens. Actuators B 79, 115–126 (2001).

    Article  CAS  Google Scholar 

  8. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    Article  CAS  Google Scholar 

  9. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    Article  CAS  Google Scholar 

  10. Gupta, A., Akin, D. & Bashir, R. Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84, 1976–1978 (2004).

    Article  CAS  Google Scholar 

  11. Ilic, B. et al. Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 5, 925–929 (2005).

    Article  CAS  Google Scholar 

  12. McKendry, R. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

    Article  CAS  Google Scholar 

  13. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotech. 1, 214–220 (2006).

    Article  CAS  Google Scholar 

  14. Wu, G. et al. Bioassay of prostate specific antigen (PSA) using microcantilevers. Nature Biotechnol. 19, 856–860 (2001).

    Article  CAS  Google Scholar 

  15. Calleja, M., Tamayo, J., Nordstrom, M. & Boisen, A. Low noise polymeric nanomechanical biosensors. Appl. Phys. Lett. 88, 113901 (2006).

    Article  Google Scholar 

  16. Bumbu, G. G., Wolkenhauer, M., Kircher, G., Gutmann, J. S. & Berger, R. Micromechanical cantilever technique — a tool for investigating the swelling of polymer brushes. Langmuir 23, 2203–2207 (2007).

    Article  CAS  Google Scholar 

  17. Reddy, M. R. & Berkowitz, M. Hydration forces between parallel DNA double helices: Computer simulations. Proc. Natl Acad. Sci. USA 86, 3165–3168 (1989).

    Article  CAS  Google Scholar 

  18. Rau, D. C., Lee, B. & Parsegian, V. A. Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices. Proc. Natl Acad. Sci. USA 81, 2621–2625 (1984).

    Article  CAS  Google Scholar 

  19. Hagan, M. F., Majumdar, A. & Chakraborty, A. K. Nanomechanical forces generated by surface grafted DNA. J. Phys. Chem. B 106, 10163–10173 (2002).

    Article  CAS  Google Scholar 

  20. Antoniou, A. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130 (2003).

    Article  CAS  Google Scholar 

  21. Mertens, J., Álvarez, M. & Tamayo, J. Real-time profile of microcantilevers for sensing applications. Appl. Phys. Lett. 87, 234102 (2005).

    Article  Google Scholar 

  22. Tao, N. J., Lindsay, S. M. & Rupprecht, A. Structure of the DNA hydration shells studied by Raman spectroscopy. Biopolymers 28, 1019–1030 (1989).

    Article  CAS  Google Scholar 

  23. Schneider, B. & Berman, H. M. Hydration of the DNA bases is local. Biophys. J. 69, 2661–2669 (1995).

    Article  CAS  Google Scholar 

  24. Bryan, W. P. Thermodynamics of water–biopolymer interactions: irreversible sorption by a single uniform sorbent phase. Biopolymers 25, 1967–1979 (1986).

    Article  CAS  Google Scholar 

  25. Casanova, F., Chiang, C. E., Li, C.-P. & Schuller, I. K. Direct observation of cooperative effects in capillary condensation: the hysteretic origin. Appl. Phys. Lett. 91, 243103 (2007).

    Article  Google Scholar 

  26. Briones, C. et al. Ordered self-assembled monolayers of peptide nucleic acids with DNA recognition capability. Phys. Rev. Lett. 93, 208103 (2004).

  27. Mateo-Martí, E., Briones, C., Pradier, C. M. & Martín-Gago, J. A. A DNA biosensor based on peptide nucleic acids on gold surfaces. Biosens. Bioelectron. 22, 1926–1932 (2007).

    Article  Google Scholar 

  28. Hagan, M. F. & Chakraborty, A. K. Hybridization dynamics of surface immobilized DNA. J. Chem. Phys. 120, 4958–4968 (2004).

    Article  CAS  Google Scholar 

  29. Peterson, A. W., Heaton, R. J. & Georgiadis, R. M. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29, 5163–5168 (2001).

    Article  CAS  Google Scholar 

  30. Sader, J. E. Calibration of rectangular atomic force microscope cantilever. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.R. acknowledges the fellowship funded by the Autonomous Community of Madrid (CAM). J.T., M.C., J.M. and D.R. acknowledge financial support from the Spanish Ministry of Science (MEC) under grant TEC2006-10316 and CAM under grant 200550M056. C.B. acknowledges funding provided by MEC under grant BIO2007-67523. Work at Centro de Astrobiología was supported by the European Union (EU), Instituto Nacional de Técnica Aeroespacial (INTA), MEC and CAM. All the authors acknowledge A. Cebollada, J.M. García-Martín, J. García, J.L. Costa-Kramer, M. Arroyo-Hernández and J.V. Anguita for their assistance in carrying out the gold deposition on the cantilevers.

Author information

Authors and Affiliations

Authors

Contributions

J.T., J.M. and M.C. designed the hydration experiments. J.T., J.M., D.R. and M.C. developed the measurement instrument. C.B., J.A.M.-G. and C.R. designed the PNA experiments for ruling out the effect of electrostatic forces. J.M., M.C. and C.R. carried out the experiments. All authors analysed the data. J.T., M.C., C.B. and J.A.M.-G. wrote the manuscript and all authors proofread it.

Corresponding author

Correspondence to Javier Tamayo.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mertens, J., Rogero, C., Calleja, M. et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nature Nanotech 3, 301–307 (2008). https://doi.org/10.1038/nnano.2008.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing