Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacteria-mediated delivery of nanoparticles and cargo into cells

Abstract

Nanoparticles and bacteria can be used, independently, to deliver genes and proteins into mammalian cells for monitoring or altering gene expression and protein production. Here, we show the simultaneous use of nanoparticles and bacteria to deliver DNA-based model drug molecules in vivo and in vitro. In our approach, cargo (in this case, a fluorescent or a bioluminescent gene) is loaded onto the nanoparticles, which are carried on the bacteria surface. When incubated with cells, the cargo-carrying bacteria (‘microbots’) were internalized by the cells, and the genes released from the nanoparticles were expressed in the cells. Mice injected with microbots also successfully expressed the genes as seen by the luminescence in different organs. This new approach may be used to deliver different types of cargo into live animals and a variety of cells in culture without the need for complicated genetic manipulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacteria-mediated delivery of nanoparticles and cargo.
Figure 2: Internalization of microbots and their cargos.
Figure 3: Flow-cytometric assessment of microbot uptake by cells.
Figure 4: Intracellular delivery and expression of a model gene by microbots.
Figure 5: Microbot-mediated delivery and functional expression of luciferase gene in mice.
Figure 6: Characterization of in vivo protein expression.

Similar content being viewed by others

References

  1. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  2. Gao, X. et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotech. 16, 63–72 (2005).

    Article  CAS  Google Scholar 

  3. Lin, Z., Su, X., Mu, Y. & Jin, Q. Methods for labeling quantum dots to biomolecules. J. Nanosci. Nanotech. 4, 641–645 (2004).

    Article  CAS  Google Scholar 

  4. Voura, E. B., Jaiswal, J. K., Mattoussi, H. & Simon, S. M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Med. 10, 993–998 (2004).

    Article  CAS  Google Scholar 

  5. Ballou, B., Ernst, L. A. & Waggoner, A. S. Fluorescence imaging of tumors in vivo. Curr. Med. Chem. 12, 795–805 (2005).

    Article  CAS  Google Scholar 

  6. West, J. L. & Halas, N. J. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003).

    Article  CAS  Google Scholar 

  7. Seppenwoolde, J. H. et al. Internal radiation therapy of liver tumors: qualitative and quantitative magnetic resonance imaging of the biodistribution of holmium-loaded microspheres in animal models. Magn. Reson. Med. 53, 76–84 (2005).

    Article  Google Scholar 

  8. Hattori, Y. & Maitani, Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J. Control. Release 97, 173–183 (2004).

    Article  CAS  Google Scholar 

  9. Jain, R. K. Haemodynamic and transport barriers to the treatment of solid tumors. Int. J. Radiat. Biol. 60, 85–100 (1991).

    Article  CAS  Google Scholar 

  10. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Rel. 65, 271–284 (2000).

    Article  CAS  Google Scholar 

  11. Vassaux, G., Nitcheu, J., Jezzard, S. & Lemoine, N. R. Bacterial gene therapy strategies. J. Pathol. 208, 290–298 (2006).

    Article  CAS  Google Scholar 

  12. Vazquez-Boland, J. A. et al. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640 (2001).

    Article  CAS  Google Scholar 

  13. Finlay, B. B. & Cossart, P. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276, 718–725 (1997).

    Article  CAS  Google Scholar 

  14. Vazquez-Boland, J. A., Dominguez-Bernal, G., Gonzalez-Zorn, B., Kreft, J. & Goebel, W. Pathogenicity islands and virulence evolution in Listeria. Microbes Infect. 3, 571–584 (2001).

    Article  CAS  Google Scholar 

  15. Hamon, M. L., Bierne, H. & Cossart, P. Listeria monocytogenes: a multifaceted model. Nature Rev. Microbiol. 4, 423–434 (2006).

    Article  CAS  Google Scholar 

  16. Pilgrim, S. et al. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther. 10, 2036–2045 (2003).

    Article  CAS  Google Scholar 

  17. Dietrich, G. et al. Delivery of antigen encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nature Biotechnol. 16, 862–866 (1998).

    Article  Google Scholar 

  18. Sizemore, D. R., Branstrom, A. A. & Sadoff, J. C. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299–302 (1995).

    Article  CAS  Google Scholar 

  19. Darji, A. et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91, 765–775 (1997).

    Article  CAS  Google Scholar 

  20. Paglia, P., Medina, E., Arioli, I., Guzman, C. A. & Colombo, M. P. Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92, 3172–3176 (1998).

    CAS  Google Scholar 

  21. Yu, Y. A. et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nature Biotechnol. 22, 313–320 (2004).

    Article  CAS  Google Scholar 

  22. Bermudes, D., Zheng, L. M. & King, I. C. Live bacteria as anticancer agents and tumor-selective protein delivery vectors. Curr. Opin. Drug Discov. Devel. 5, 194–199 (2002).

    CAS  Google Scholar 

  23. Loeffler, D. I., Schoen, C. U., Goebel, W. & Pilgrim, S. Comparison of different live vaccine strategies in vivo for delivery of protein antigen or antigen-encoding DNA and mRNA by virulence-attenuated Listeria monocytogenes. Infect. Immun. 74, 3946–3957 (2006).

    Article  CAS  Google Scholar 

  24. Souders, N. C., Verch, T. & Paterson, Y. In vivo bactofection: Listeria can function as a DNA-cancer vaccine. DNA & Cell Biol. 25, 142–151 (2006).

    Article  CAS  Google Scholar 

  25. Souders, N. C., Sewell, D. A., Pan, Z. K., Hussain, S. F., Rodriguez, A., Wallecha, A. & Paterson, Y. Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun. 7, 2–12 (2007).

    Google Scholar 

  26. Weber, W. & Fussenegger, M. Inducible gene expression in mammalian cells and mice. Methods Mol. Biol. 267, 451–466 (2004).

    CAS  Google Scholar 

  27. Bhunia, A. K et al. Development and characterization of a monoclonal antibody specific for Listeria monocytogenes and Listeria innocua. Infect. Immun. 59, 3176–3184 (1991).

    CAS  Google Scholar 

  28. Geng, T. et al. Expression of cellular antigens of Listeria monocytogenes that react with monoclonal antibodies C11E9 and EM-7G1 under acid-, salt- or temperature-induced stress environments. J. Appl. Microbiol. 95, 762–772 (2003).

    Article  CAS  Google Scholar 

  29. Geng, T., Hahm, B. K. & Bhunia, A. K. Selective enrichment media affect the antibody-based detection of stress-exposed Listeria monocytogenes due to differential expression of antibody-reactive antigens identified by protein sequencing. J. Food Prot. 69, 1879–1886 (2006).

    Article  CAS  Google Scholar 

  30. Drevets, D.A. Dissemination of Listeria monocytogenes by infected phagocytes. Infect. Immun. 67, 3512–3517 (1999).

    CAS  Google Scholar 

  31. Bron, P. A., Monk, I. R., Corr, S. C., Hill, C. & Gahan, C. G. Novel luciferase reporter system for in vitro and organ-specific monitoring of differential gene expression in Listeria monocytogenes. Appl. Environ. Microbiol. 72, 2876–2884 (2006).

    Article  CAS  Google Scholar 

  32. Hardy, J., Margolis, J. J. & Contag, C. H. Induced biliary excretion of Listeria monocytogenes. Infect Immun. 74, 1819–1827 (2006).

    Article  CAS  Google Scholar 

  33. Miller, A. D. The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr. Med. Chem. 10, 1195–2110 (2003).

    Article  CAS  Google Scholar 

  34. El-Aneed, A. An overview of current delivery systems in cancer gene therapy. J. Control. Rel. 94, 1–14 (2004).

    Article  CAS  Google Scholar 

  35. Lechardeur, D. & Lukacs, G. L. Intracellular barriers to non-viral gene transfer. Curr. Gene Ther. 2, 183–194 (2002).

    Article  CAS  Google Scholar 

  36. Cheong, I. et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science 314, 1308–1311 (2006).

    Article  CAS  Google Scholar 

  37. Michl, P. and Gress, T. M. Bacteria and bacterial toxins as therapeutic agents for solid tumors. Curr. Cancer Drug Targets. 4, 689–702 (2004).

    Article  CAS  Google Scholar 

  38. Braun, L., Nato, F., Payrastre, B., Mazie, J. C. & Cossart, P. The 213-amino-acid leucine-rich repeat region of the Listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3-kinase and membrane ruffling. Mol. Microbiol. 34, 10–23 (1999).

    Article  CAS  Google Scholar 

  39. Tang, P., Foubister, V., Pucciarelli, G. & Finlay, B. B. Methods to study bacterial invasion. J. Microbiol. Methods 18, 227–240 (1993).

    Article  Google Scholar 

  40. Zreiqat, H., Sungaran, R., Howlett, C. R. & Markovic, B. Quantitative aspects of an in situ hybridization procedure for detecting mRNAs in cells using 96-well microplates. Mol. Biotechnol. 10, 107–113 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Koons, Drug Discovery Shared Resource of Purdue Cancer Center, for her help with the in vivo studies, S. Leavesly for his inputs in the initial bioluminescence imaging studies, C. Buck for assisting in the use of the facilities at Bindley Biosciences Center, and the Weldon School of Biomedical Engineering for funding the work. D.A. was supported by funds from NIH NIBIB.

Author information

Authors and Affiliations

Authors

Contributions

D.A. and R.B. designed the experiments. D.A. performed and was involved in all aspects of the experiments; J.S. performed confocal and fluorescence imaging; K.R. and J.P.R. performed the flow cytometery; and D.S. performed the SEM imaging. D.A., K.B. and A.B. designed and performed the cytotoxicity studies. S.M. assisted in in vivo studies. D.A. and R.B. co-wrote the paper.

Corresponding authors

Correspondence to Demir Akin or Rashid Bashir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods, table and figures S1-S7 (PDF 382 kb)

Supplementary Information

Supplementary figure S1a video (AVI 1601 kb)

Supplementary Information

Supplementary figure S1b video (AVI 1601 kb)

Supplementary Information

Supplementary figure S2a video (AVI 2745 kb)

Supplementary Information

Supplementary figure S2b video (AVI 1914 kb)

Supplementary Information

Supplementary figure S3 video (AVI 2133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akin, D., Sturgis, J., Ragheb, K. et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotech 2, 441–449 (2007). https://doi.org/10.1038/nnano.2007.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing