Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs

Abstract

Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit ‘cold’ electroluminescence in percolation films1,2, tunnel diodes3, electromigrated nanoparticle aggregates4,5, optical antennas6 or scanning tunnelling microscopy7,8,9. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRET–light-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides10. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes11 in on-chip optical interconnects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoscopic FRET-LEDs from electromigrated silver nanoparticles covered with an exfoliated TMDC monolayer.
Figure 2: Spectral focusing of nanoscopic silver FRET-LEDs with different overlayers.
Figure 3: Non-contact AFM of the break-junction region.
Figure 4: Change of WS2 photoluminescence spectrum upon electromigration due to straining.

Similar content being viewed by others

References

  1. Nepijko, S. A. et al. Light emission from Ag cluster films excited by conduction current. Ann. Phys. 9, 125–131 (2000).

    Article  CAS  Google Scholar 

  2. Borzjak, P. G. et al. Neue Erscheinungen in sehr dünnen Metallschichten. Phys. Stat. Sol. 8, 55–58 (1965).

    Article  Google Scholar 

  3. Lambe, J. et al. Light-emission from inelastic electron-tunneling. Phys. Rev. Lett. 37, 923 (1976).

    Article  CAS  Google Scholar 

  4. Gonzalez, J. I. et al. Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature. Phys. Rev. Lett. 93, 147402 (2004).

    Article  Google Scholar 

  5. Lee, T. H. et al. Single-molecule optoelectronics. Acc. Chem. Res. 38, 534–541 (2005).

    Article  CAS  Google Scholar 

  6. Kern, J. et al. Electrically driven optical antennas. Nat. Photon. 9, 582–586 (2015).

    Article  CAS  Google Scholar 

  7. Nilius, N. et al. Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope. Phys. Rev. Lett. 84, 3994 (2000).

    Article  CAS  Google Scholar 

  8. Berndt, R. et al. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett. 67, 3796–3799 (1991).

    Article  CAS  Google Scholar 

  9. Chen, C. et al. Visualization of Fermi's golden rule through imaging of light emission from atomic silver chains. Science 325, 981–985 (2009).

    Article  CAS  Google Scholar 

  10. Mak, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  11. Mueller, T. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nat. Nanotech. 5, 27–31 (2010).

    Article  CAS  Google Scholar 

  12. Klein, D. L. et al. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997).

    Article  CAS  Google Scholar 

  13. Schneider, N. L. et al. Optical probe of quantum shot-noise reduction at a single-atom contact. Phys. Rev. Lett. 105, 026601 (2010).

    Article  Google Scholar 

  14. Coe, S. et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  CAS  Google Scholar 

  15. Achermann, M. et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004).

    Article  CAS  Google Scholar 

  16. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

  17. Baugher, B. W. H. et al. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotech. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  18. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotech. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  19. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

    Article  CAS  Google Scholar 

  20. Silly, F. et al. Time-autocorrelation in scanning-tunneling-microscope-induced photon emission from metallic surface. Appl. Phys. Lett. 77, 3648 (2000).

    Article  CAS  Google Scholar 

  21. Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).

    Article  CAS  Google Scholar 

  22. Chizhik, A. I. et al. Metal-induced energy transfer for live cell nanoscopy. Nat. Photon. 8, 124–127 (2014).

    Article  CAS  Google Scholar 

  23. Drexhage, K. H. Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1, 693–701 (1970).

    Article  Google Scholar 

  24. Swathi, R. S. et al. Long range resonance energy transfer from a dye molecule to graphene has (distance)(−4) dependence. J. Chem. Phys. 130, 086101 (2009).

    Article  CAS  Google Scholar 

  25. Prins, F. et al. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2 . Nano Lett. 14, 6087–6091 (2014).

    Article  CAS  Google Scholar 

  26. Raja, A. et al. Energy transfer from quantum dots to graphene and MoS2: the role of absorption and screening in two-dimensional materials. Nano Lett. 16, 2328–2333 (2016).

    Article  CAS  Google Scholar 

  27. Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2 . Nat. Mater. 14, 889–893 (2015).

    Article  CAS  Google Scholar 

  28. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  29. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2 . Phys. Rev. B 90, 205422 (2014).

    Article  Google Scholar 

  30. Plechinger, G. et al. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2, 015006 (2015).

    Article  Google Scholar 

  31. Chaudhuri, D. et al. Toward subdiffraction transmission microscopy of diffuse materials with silver nanoparticle white-light beacons. Nano Lett. 9, 952–956 (2009).

    Article  CAS  Google Scholar 

  32. Bao, W. et al. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun. 6, 7993 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Mishchenko for stimulating discussions and R. Martin for assistance with sample fabrication. This work was inspired by a Scialog Fellowship (J.M.L.) of the Research Corporation for Science Advancement. The authors acknowledge the DFG for providing collaborative funding (SFB 689 and GRK 1570). J.M.L. acknowledges financial support from the European Research Council through Starting Grant MolMesON (no. 305020). A.C. acknowledges funding from the DFG through the Emmy Noether Programme (CH 1672/1-1).

Author information

Authors and Affiliations

Authors

Contributions

R.P.P., F.S., G.P., F.H., I.C., J.K., P.N. and J.V. performed the experiments and analysed the data. A.C., T.K. and C.S. contributed materials and analysis tools. J.M.L. and S.B. conceived and designed the experiments. J.M.L. wrote the paper with input from the authors.

Corresponding author

Correspondence to John M. Lupton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchert, R., Steiner, F., Plechinger, G. et al. Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs. Nature Nanotech 12, 637–641 (2017). https://doi.org/10.1038/nnano.2017.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing