Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Catalysis with two-dimensional materials and their heterostructures

Abstract

Graphene and other 2D atomic crystals are of considerable interest in catalysis because of their unique structural and electronic properties. Over the past decade, the materials have been used in a variety of reactions, including the oxygen reduction reaction, water splitting and CO2 activation, and have been shown to exhibit a range of catalytic mechanisms. Here, we review recent advances in the use of graphene and other 2D materials in catalytic applications, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals). We discuss the advantages of these materials for catalysis and the different routes available to tune their electronic states and active sites. We also explore the future opportunities of these catalytic materials and the challenges they face in terms of both fundamental understanding and the development of industrial applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of catalysis or active sites for various graphene structures and their heterostructures.
Figure 2: Graphene as a catalyst, through perturbations to the hexagonal structure.
Figure 3: Other 2D materials for catalytic applications.
Figure 4: Catalytic properties of metals coated with 2D crystals, arising from electron transfer between metal and 2D crystals.
Figure 5: Catalysis under graphene cover, and from sandwich structures based on 2D crystals.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Antolini, E. Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl. Catal. B 123, 52–68 (2012).

    Article  CAS  Google Scholar 

  3. Hur, S. H. & Park, J. N. Graphene and its application in fuel cell catalysis: a review. Asia Pac. J. Chem. Eng. 8, 218–233 (2013).

    Article  CAS  Google Scholar 

  4. An, X. Q. & Yu, J. C. Graphene-based photocatalytic composites. RSC Adv. 1, 1426–1434 (2011).

    Article  CAS  Google Scholar 

  5. Machado, B. F. & Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012).

    Article  CAS  Google Scholar 

  6. Deng, D. et al. Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 47, 10016–10018 (2011).

    Article  CAS  Google Scholar 

  7. Su, C. L. & Loh, K. P. Carbocatalysts: graphene oxide and its derivatives. Acc. Chem. Res. 46, 2275–2285 (2013).

    Article  CAS  Google Scholar 

  8. Qu, L. T., Liu, Y., Baek, J.-B. & Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).

    Article  CAS  Google Scholar 

  9. Yu, L., Pan, X., Cao, X., Hu, P. & Bao, X. Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J. Catal. 282, 183–190 (2011).

    Article  CAS  Google Scholar 

  10. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  11. Novoselov, K. S. Nobel Lecture. Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

    Article  CAS  Google Scholar 

  12. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  13. Deng, D. H. et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 371–375 (2013).

    Article  CAS  Google Scholar 

  14. Deng, J. et al. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 7, 1919–1923 (2014).

    Article  CAS  Google Scholar 

  15. Deng, J., Ren, P., Deng, D. & Bao, X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2100–2104 (2015).

    Article  CAS  Google Scholar 

  16. Zheng, X. J. et al. Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells. Angew. Chem. Int. Ed. 53, 7023–7027 (2014).

    Article  CAS  Google Scholar 

  17. Mu, R. T. et al. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 51, 4856–4859 (2012).

    Article  CAS  Google Scholar 

  18. Yao, Y. X. et al. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl Acad. Sci. USA 111, 17023–17028 (2014).

    Article  CAS  Google Scholar 

  19. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  20. Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004).

    Article  CAS  Google Scholar 

  21. Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M. & McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. A 25, 2558–2561 (2007).

    Article  CAS  Google Scholar 

  22. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  23. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  24. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  CAS  Google Scholar 

  25. Enoki, T., Kobayashi, Y. & Fukui, K.-I. Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 26, 609–645 (2007).

    Article  CAS  Google Scholar 

  26. Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 916–916 (2007).

    Article  CAS  Google Scholar 

  27. Girit, C. O. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009).

    Article  CAS  Google Scholar 

  28. Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    Article  CAS  Google Scholar 

  29. Li, L., Reich, S. & Robertson, J. Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 184109 (2005).

    Article  CAS  Google Scholar 

  30. Zhong, J. H. et al. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014).

    Article  CAS  Google Scholar 

  31. Chae, S. J. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv. Mater. 21, 2328–2333 (2009).

    Article  CAS  Google Scholar 

  32. Li, Z. J., Cheng, Z. G., Wang, R., Li, Q. & Fang, Y. Spontaneous formation of nanostructures in graphene. Nano Lett. 9, 3599–3602 (2009).

    Article  CAS  Google Scholar 

  33. Wei, D. C. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

    Article  CAS  Google Scholar 

  34. Deng, D. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011).

    Article  CAS  Google Scholar 

  35. Panchokarla, L. S. et al. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009).

    Google Scholar 

  36. Dai, J. Y., Yuan, J. M. & Giannozzi, P. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl. Phys. Lett. 95, 232105 (2009).

    Article  CAS  Google Scholar 

  37. Liu, Z. W. et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 50, 3257–3261 (2011).

    Article  CAS  Google Scholar 

  38. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014).

    Article  CAS  Google Scholar 

  39. Yang, Z. et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012).

    Article  CAS  Google Scholar 

  40. Yang, S. B. et al. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 22, 3634–3640 (2012).

    Article  CAS  Google Scholar 

  41. Cretu, O. et al. Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett. 105, 196102 (2010).

    Article  CAS  Google Scholar 

  42. Wang, H. et al. Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012).

    Article  CAS  Google Scholar 

  43. Jiong, Z. et al. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 243, 1228–1232 (2014).

    Google Scholar 

  44. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    Article  CAS  Google Scholar 

  45. Liu, F. et al. Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. J. Mater. Chem. 22, 5495–5502 (2012).

    Article  CAS  Google Scholar 

  46. Yan, J. A., Xian, L. D. & Chou, M. Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett. 103, 086802 (2009).

    Article  CAS  Google Scholar 

  47. Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007).

    Article  CAS  Google Scholar 

  48. Poh, H. L., Simek, P., Sofer, Z. & Pumera, M. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem. Eur. J. 19, 2655–2662 (2013).

    Article  CAS  Google Scholar 

  49. Wu, M., Cao, C. & Jiang, J. Z. Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010).

    Article  CAS  Google Scholar 

  50. Wang, H., Sun, K., Tao, F., Stacchiola, D. J. & Hu, Y. H. 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. Int. Ed. 52, 9210–9214 (2013).

    Article  CAS  Google Scholar 

  51. Jiang, D. E., Sumpter, B. G. & Dai, S. Unique chemical reactivity of a graphene nanoribbon's zigzag edge. J. Chem. Phys. 126, 134701 (2007).

    Article  CAS  Google Scholar 

  52. Sheng, Z.-H., Gao, H.-L., Bao, W.-J., Wang, F.-B. & Xia, X.-H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22, 390–395 (2012).

    Article  CAS  Google Scholar 

  53. Gao, Y. J. et al. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem. Int. Ed. 52, 2109–2113 (2013).

    Article  CAS  Google Scholar 

  54. Chen, S., Duan, J. J., Jaroniec, M. & Qiao, S. Z. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26, 2925–2930 (2014).

    Article  CAS  Google Scholar 

  55. Yoo, E., Nakamura, J. & Zhou, H. S. N-doped graphene nanosheets for Li–air fuel cells under acidic conditions. Energy Environ. Sci. 5, 6928–6932 (2012).

    Article  CAS  Google Scholar 

  56. Wu, G. et al. Nitrogen doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. ACS Nano 6, 9764–9776 (2012).

    Article  CAS  Google Scholar 

  57. Yu, L. Density Functional Theory Studies on Modulating the Electronic Structures of sp2 Hybridized Carbon Materials for Oxygen Activation PhD thesis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (2012).

    Google Scholar 

  58. Fellinger, T. P., Hasche, F., Strasser, P. & Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012).

    Article  CAS  Google Scholar 

  59. Amirfakhri, S. J., Binny, D., Meunier, J. L. & Berk, D. Investigation of hydrogen peroxide reduction reaction on graphene and nitrogen doped graphene nanoflakes in neutral solution. J. Power Sources 257, 356–363 (2014).

    Article  CAS  Google Scholar 

  60. Long, J. et al. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catal. 2, 622–631 (2012).

    Article  CAS  Google Scholar 

  61. Zhang, J. T., Zhao, Z. H., Xia, Z. H. & Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nature Nanotech. 10, 444–452 (2015).

    Article  CAS  Google Scholar 

  62. Lu, Y.-H., Zhou, M., Zhang, C. & Feng, Y.-P. Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113, 20156–20160 (2009).

    Article  CAS  Google Scholar 

  63. Deng, D. H. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1, e1500462 (2015).

    Article  Google Scholar 

  64. Boehm, H. P., Clauss, A., Fischer, G. & Hofmann, U. in Fifth Conference on Carbon 73–80 (Pergamon, 1962).

    Book  Google Scholar 

  65. Dreyer, D. R., Jia, H.-P. & Bielawski, C. W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010).

    CAS  Google Scholar 

  66. Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    Article  CAS  Google Scholar 

  67. Gao, Y., Ma, D., Wang, C., Guan, J. & Bao, X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun. 47, 2432–2434 (2011).

    Article  CAS  Google Scholar 

  68. Satheesh, D., Shanmugam, S. & Ravichandran, K. Synthesis and characterization of nitro-functionalized electrochemically exfoliated graphene. Mater. Lett. 137, 153–155 (2014).

    Article  CAS  Google Scholar 

  69. Castro Neto, A. H. & Novoselov, K. Two-dimensional crystals: beyond graphene. Mater. Express 1, 10–17 (2011).

    Article  CAS  Google Scholar 

  70. Castro Neto, A. H. & Novoselov, K. New directions in science and technology: two-dimensional crystals. Rep. Prog. Phys. 74, 8 (2011).

    Google Scholar 

  71. Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008).

    Article  CAS  Google Scholar 

  72. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Mater. 8, 76–80 (2009).

    Article  CAS  Google Scholar 

  73. Goettmann, F., Thomas, A. & Antonietti, M. Metal-free activation CO2 by mesoporous graphitic carbon nitride. Angew. Chem. Int. Ed. 46, 2717–2720 (2007).

    Article  CAS  Google Scholar 

  74. Yang, S., Feng, X., Wang, X. & Muellen, K. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. Int. Ed. 50, 5339–5343 (2011).

    Article  CAS  Google Scholar 

  75. Zheng, Y. et al. Hydrogen evolution by a metal-free electrocatalyst. Nature Commun. 5, 3783 (2014).

    Article  Google Scholar 

  76. Goettmann, F., Fischer, A., Antonietti, M. & Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene. Angew. Chem. Int. Ed. 45, 4467–4471 (2006).

    Article  CAS  Google Scholar 

  77. Jiao, Y., Zheng, Y., Jaroniec, M. T. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    Article  CAS  Google Scholar 

  78. Zheng, Y., Jiao, Y., Jaroniec, M. & Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 52–65 (2015).

    Article  CAS  Google Scholar 

  79. Ma, T. Y., Dai, S., Jaroniec, M. & Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014).

    Article  CAS  Google Scholar 

  80. Li, Y. J., Xu, L., Liu, H. B. & Li, Y. L. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572–2586 (2014).

    Article  CAS  Google Scholar 

  81. Liu, R. J. et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale 6, 11336–11343 (2014).

    Article  CAS  Google Scholar 

  82. Wu, P., Du, P., Zhang, H. & Cai, C. X. Graphdiyne as a metal-free catalyst for low-temperature CO oxidation. Phys. Chem. Chem. Phys. 16, 5640–5648 (2014).

    Article  CAS  Google Scholar 

  83. Yu, H. Z., Du, A. J., Song, Y. & Searles, D. J. Graphyne and graphdiyne: versatile catalysts for dehydrogenation of light metal complex hydrides. J. Phys. Chem. C 117, 21643–21650 (2013).

    Article  CAS  Google Scholar 

  84. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  85. Wang, H. T., Yuan, H. T., Hong, S. S., Li, Y. B. & Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2015).

    Article  CAS  Google Scholar 

  86. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  87. Wang, D. Y. et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets — carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 1587–1592 (2015).

    Article  CAS  Google Scholar 

  88. Xie, J. et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013).

    Article  CAS  Google Scholar 

  89. Deng, J. et al. High-performance hydrogen evolution electrocatalysis by layer-controlled MoS2 nanosheets. RSC Adv. 4, 34733–34738 (2014).

    Article  CAS  Google Scholar 

  90. Yu, Y. F. et al. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014).

    Article  CAS  Google Scholar 

  91. Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).

    Article  CAS  Google Scholar 

  92. Sun, Y. F. et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. Int. Ed. 51, 8727–8731 (2012).

    Article  CAS  Google Scholar 

  93. Sun, Y. F. et al. All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, http://dx.doi.org/10.1002/aenm.201300611 (2014).

  94. Lei, F. C. et al. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 136, 6826–6829 (2014).

    Article  CAS  Google Scholar 

  95. Liu, Y. W. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136, 15670–15675 (2014).

    Article  CAS  Google Scholar 

  96. Zhou, M. et al. C-oriented and {010} facets exposed BiVO4 nanowall films: template-free fabrication and their enhanced photoelectrochemical properties. Chem. Asian J. 5, 2515–2523 (2010).

    Article  CAS  Google Scholar 

  97. Sun, Y. F. et al. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nature Commun. 4, 2899 (2013).

    Article  CAS  Google Scholar 

  98. Cao, Y. et al. Quality heterostructures from two dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

    Article  CAS  Google Scholar 

  99. Huang, X. Q. et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotech. 6, 28–32 (2011).

    Article  CAS  Google Scholar 

  100. Dai, Y., Liu, S. J. & Zheng, N. F. C2H2 treatment as a facile method to boost the catalysis of Pd nanoparticulate catalysts. J. Am. Chem. Soc. 136, 5583–5586 (2014).

    Article  CAS  Google Scholar 

  101. Duan, H. H. et al. Ultrathin rhodium nanosheets. Nature Commun. 5, 3093 (2014).

    Article  CAS  Google Scholar 

  102. Jia, Y. Y. et al. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 136, 3748–3751 (2014).

    Article  CAS  Google Scholar 

  103. Li, X. H. & Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott–Schottky heterojunctions for catalysis. Chem. Soc. Rev. 42, 6593–6604 (2013).

    Article  CAS  Google Scholar 

  104. Chen, X. et al. Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy. Chem. Sci. 6, 3262–3267 (2015).

    Article  CAS  Google Scholar 

  105. Deng, J. et al. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. J. Mater. Chem. A 1, 14868–14873 (2013).

    Article  CAS  Google Scholar 

  106. Hu, Y. et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem. Int. Ed. 53, 3675–3679 (2014).

    Article  CAS  Google Scholar 

  107. Zou, X. C. et al. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 53, 4372–4376 (2014).

    Article  CAS  Google Scholar 

  108. Fu, T. et al. Acid-resistant catalysis without use of noble metals: carbon nitride with underlying nickel. ACS Catal. 4, 2536–2543 (2014).

    Article  CAS  Google Scholar 

  109. Uosaki, K. et al. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof. J. Am. Chem. Soc. 136, 6542–6545 (2014).

    Article  CAS  Google Scholar 

  110. Lyalin, A., Nakayama, A., Uosaki, K. & Taketsugu, T. Functionalization of monolayer h-BN by a metal support for the oxygen reduction reaction. J. Phys. Chem. C 117, 21359–21370 (2013).

    Article  CAS  Google Scholar 

  111. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  CAS  Google Scholar 

  112. Chen, W., Santos, E. J. G., Zhu, W. G., Kaxiras, E. & Zhang, Z. Y. Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett. 13, 509–514 (2013).

    Article  CAS  Google Scholar 

  113. Cui, X. J., Ren, P. J., Deng, D. H., Deng, J. & Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 9, 123–129 (2016).

    Article  CAS  Google Scholar 

  114. Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).

    Article  CAS  Google Scholar 

  115. Huang, L. et al. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 99, 163107 (2011).

    Article  CAS  Google Scholar 

  116. Petrovic, M. et al. The mechanism of caesium intercalation of graphene. Nature Commun. 4, 2772 (2013).

    Article  CAS  Google Scholar 

  117. Zhang, Y. H. et al. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule–metal interaction and metal-catalyzed reactions. Nano Lett. 15, 3616–3623 (2015).

    Article  CAS  Google Scholar 

  118. Gao, L. B. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Commun. 3, 699 (2012).

    Article  CAS  Google Scholar 

  119. Zhang, Y. H. et al. Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene. Phys. Chem. Chem. Phys. 15, 19042–19048 (2013).

    Article  CAS  Google Scholar 

  120. Jin, L. et al. Surface chemistry of CO on Ru(0001) under the confinement of graphene cover. J. Phys. Chem. C 118, 12391–12398 (2014).

    Article  CAS  Google Scholar 

  121. Fu, Q. & Bao, X. Catalysis on a metal surface with a graphitic cover. Chin. J. Catal. 36, 517–519 (2015).

    Article  CAS  Google Scholar 

  122. Sachs, B. et al. Doping mechanisms in graphene–MoS2 hybrids. Appl. Phys. Lett. 103, 251607 (2013).

    Article  CAS  Google Scholar 

  123. Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

    Article  CAS  Google Scholar 

  124. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Commun. 6, 7242 (2015).

    Article  CAS  Google Scholar 

  125. Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    Article  CAS  Google Scholar 

  126. Yang, J. et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 13751–13754 (2013).

    Article  CAS  Google Scholar 

  127. Cai, X. et al. Tuning the surface charge of 2D oxide nanosheets and the bulk-scale production of superlatticelike composites. J. Am. Chem. Soc. 137, 2844–2847 (2015).

    Article  CAS  Google Scholar 

  128. Gao, M. R. et al. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Commun. 6, 5982 (2015).

    Article  CAS  Google Scholar 

  129. Wang, Y. et al. What molecular assembly can learn from catalytic chemistry. Chem. Soc. Rev. 43, 399–411 (2014).

    Article  CAS  Google Scholar 

  130. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  131. Chen, X. Q., Deng, D. H., Pan, X. L., Hu, Y. F. & Bao, X. H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chem. Commun. 51, 217–220 (2015).

    Article  CAS  Google Scholar 

  132. Ren, W. C. & Cheng, H. M. The global growth of graphene. Nature Nanotech. 9, 726–730 (2014).

    Article  CAS  Google Scholar 

  133. Son, J. S. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Ed. 48, 6861–6864 (2009).

    Article  CAS  Google Scholar 

  134. Si, P. Z. et al. Synthesis and structure of multi-layered WS2(CoS), MOS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. J. Mater. Sci. 40, 4287–4291 (2005).

    Article  CAS  Google Scholar 

  135. Norimatsu, W. & Kusunoki, M. Transitional structures of the interface between graphene and 6H-SiC (0001). Chem. Phys. Lett. 468, 52–56 (2009).

    Article  CAS  Google Scholar 

  136. Deng, D. et al. Freestanding graphene by thermal splitting of silicon carbide granules. Adv. Mater. 22, 2168–2171 (2010).

    Article  CAS  Google Scholar 

  137. Presser, V., Heon, M. & Gogotsi, Y. Carbide-derived carbons from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011).

    Article  CAS  Google Scholar 

  138. Li, X. Y. et al. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nature Commun. 5, 3688 (2014).

    Article  CAS  Google Scholar 

  139. Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S. & Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Commun. 4, 2390 (2013).

    Article  Google Scholar 

  140. Yeh, T. F., Teng, C. Y., Chen, S. J. & Teng, H. S. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26, 3297–3303 (2014).

    Article  CAS  Google Scholar 

  141. Sim, U. et al. N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ. Sci. 6, 3658–3664 (2013).

    Article  CAS  Google Scholar 

  142. Xue, Y. H. et al. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem. Int. Ed. 51, 12124–12127 (2012).

    Article  CAS  Google Scholar 

  143. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    Article  CAS  Google Scholar 

  144. Chen, X. F., Zhang, J. S., Fu, X. Z., Antonietti, M. & Wang, X. C. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009).

    Article  CAS  Google Scholar 

  145. Su, F. Z. et al. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132, 16299–16301 (2010).

    Article  CAS  Google Scholar 

  146. Zhu, J. J., Wei, Y. C., Chen, W. K., Zhao, Z. & Thomas, A. Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chem. Commun. 46, 6965–6967 (2010).

    Article  CAS  Google Scholar 

  147. Santos, V. P. et al. Mechanistic insight into the synthesis of higher alcohols from syngas: the role of K promotion on MoS2 catalysts. ACS Catal. 3, 1634–1637 (2013).

    Article  CAS  Google Scholar 

  148. Huang, M. & Cho, K. Density functional theory study of CO hydrogenation on a MoS2 surface. J. Phys. Chem. C 113, 5238–5243 (2009).

    Article  CAS  Google Scholar 

  149. Erickson, K. et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.B. Li for help with drawing the structural models in Figs 1 and 4a, and the National Natural Science Foundation of China (grants 21321002, 21573220 and 21303191) and the strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA09030100) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. S. Novoselov, Zhongqun Tian or Xinhe Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Novoselov, K., Fu, Q. et al. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotech 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing