Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of magnetism by electric fields

Abstract

The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electric-field effects in a (Ga,Mn)As channel.
Figure 2: Electric-field-defined ferromagnetic nanodots.
Figure 3: Electric-field effects in ferromagnetic metals.
Figure 4: Using an electric-field pulse to reverse the magnetization and polarization in BiFeO3.
Figure 5: Electric-field control of exchange bias and tunnel magnetoresistance.
Figure 6: Electric-field control of ferromagnetic moment in RFeO3 (R = Dy0.7Gd0.3).
Figure 7: Electrically active magnetic resonance, electromagnon and optical magnetoelectric effect in (Eu,Y)MnO3.

Similar content being viewed by others

References

  1. Slonczewski, J. S. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  3. Ikeda, S. et al. Recent progress of perpendicular anisotropy magnetic tunnel junctions for nonvolatile VLSI. SPIN 2, 1240003 (2012).

    Article  CAS  Google Scholar 

  4. Khvalkovskiy, A. V. et al. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D 46, 074001 (2013).

    Article  Google Scholar 

  5. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  CAS  Google Scholar 

  6. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  7. Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga, Mn)As. Appl. Phys. Lett. 97, 222501 (2010).

    Article  CAS  Google Scholar 

  8. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  9. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junctions. Nature Mater. 9, 721–724 (2010).

    Article  CAS  Google Scholar 

  10. Sato, H. et al. Comprehensive study of CoFeB–MgO magnetic tunnel junction characteristics with single- and double-interface scaling down to 1X nm. Tech. Dig. Int. Electron Devices Meeting 60–63 (2013).

  11. Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000).

    Article  CAS  Google Scholar 

  12. Iwasaki, Y. Stress-driven magnetization reversal in magnetoresistive films with in-plane magnetocystalline anisotropy. J. Magn. Magn. Mater. 240, 395–397 (2002).

    Article  CAS  Google Scholar 

  13. Overby, M., Chernyshov, A., Rokhinson, L. P., Liu, X. & Furdyna, J. K. GaMnAs-based hybrid multiferroic memory devices. Appl. Phys. Lett. 92, 192501 (2008).

    Article  CAS  Google Scholar 

  14. Bihler, C. et al. Ga1–xMnxAs/piezoelectric actuator hybrids: A model for magnetoelastic magnetization manipulation. Phys. Rev. B 78, 045203 (2008).

    Article  CAS  Google Scholar 

  15. Rushforth, A. W. et al. Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures. Phys. Rev. B 78, 085314 (2008).

    Article  CAS  Google Scholar 

  16. Lei, N., Park, S., Lecoeur, P., Ravelosona, D. & Chappert, C. Magnetization reversal assisted by the inverse piezoelectric effect in Co-Fe-B/ferroelectric multilayers. Phys. Rev. B 84, 012404 (2011).

    Article  CAS  Google Scholar 

  17. Methfessel, S. Potential application of magnetic rare earth compounds. IEEE Trans. Magn. 1, 144–155 (1965).

    Article  CAS  Google Scholar 

  18. Ascher, E., Rider, H., Schimid, H. & Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).

    Article  CAS  Google Scholar 

  19. Awschalom, D. D. & Kawakami, R. K. Teaching magnets new tricks. Nature 408, 923–924 (2000).

    Article  CAS  Google Scholar 

  20. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000). This was the first report of voltage-induced magnetization phase transitions in magnetic materials.

    Article  CAS  Google Scholar 

  21. Sawicki, M. et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. Nature Phys. 6, 22–25 (2010).

    Article  CAS  Google Scholar 

  22. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  CAS  Google Scholar 

  23. Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195295 (2001).

    Article  CAS  Google Scholar 

  24. Nishitani, Y. et al. Curie temperature versus hole concentration in field-effect structures of Ga1–xMnxAs. Phys. Rev. B 81, 045208 (2010).

    Article  CAS  Google Scholar 

  25. Chang, H. W., Akita, S., Matsukura, F. & Ohno, H. Hole concentration dependence of the Curie temperature of (Ga,Mn)Sb in a field-effect structure. Appl. Phys. Lett. 103, 142402 (2013).

    Article  CAS  Google Scholar 

  26. Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structure. Phys. Rev. Lett. 88, 207204 (2002).

    Article  CAS  Google Scholar 

  27. Lee, H.–J., Helgren, E. & Hellman, F. Gate-controlled magnetic properties of the magnetic semiconductor (Zn,Co)O. Appl. Phys. Lett. 94, 212106 (2009).

    Article  CAS  Google Scholar 

  28. Li, L. et al. Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys. Rev. B 85, 174430 (2012).

    Article  CAS  Google Scholar 

  29. Nepal, N. et al. Electric field control of room temperature ferromagnetism in III–V dilute magnetic semiconductors. Appl. Phys. Lett. 94, 132505 (2009).

    Article  CAS  Google Scholar 

  30. Park, J. D. et al. A group-IV ferromagnetic semiconductors MnxGe1–x . Science 295, 651–654 (2002).

    Article  CAS  Google Scholar 

  31. Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

    Article  CAS  Google Scholar 

  32. Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-Fermion-mediated ferromagnetism in a topological insulator. Nature Phys. 8, 729–733 (2012).

    Article  CAS  Google Scholar 

  33. Xufeng, K. et al. Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett. 13, 4587–4593 (2013).

    Article  CAS  Google Scholar 

  34. Chiba, D. et al. Anomalous Hall effect in field-effect structures of (Ga,Mn)As. Phys. Rev. Lett. 104, 106601 (2010).

    Article  CAS  Google Scholar 

  35. Chiba, D., Matsukura, F. & Ohno, H. Electrically defined ferromagnetic nanodots. Nano Lett. 10, 4505–4508 (2010).

    Article  CAS  Google Scholar 

  36. Chiba, D., Yamanouchi, F., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003). This was the first report of electric-field control of coercivity and electric-field-assisted magnetization reversal in magnetic materials.

    Article  CAS  Google Scholar 

  37. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008). This was the first report of voltage control of magnetic anisotropy in magnetic materials.

    Article  CAS  Google Scholar 

  38. Stöhr, J., Siegmann, H. C., Kashuna, A. & Gamble, S. J. Magnetization switching without charge or spin currents. Appl. Phys. Lett. 94, 072504 (2009).

    Article  CAS  Google Scholar 

  39. Balestriere, P., Devolder, T., Wunderlich, J. & Chappert, C. Electric field induced anisotropy modification in (Ga,Mn)As: A strategy for the precessional switching of the magnetization. Appl. Phys. Lett. 96, 142504 (2010).

    Article  CAS  Google Scholar 

  40. Chiba, D., Nakatani, Y., Matsukura, F. & Ohno, H. Simulation of magnetization switching by electric-field manipulation of magnetic anisotropy. Appl. Phys. Lett. 96, 192596 (2010).

    Article  CAS  Google Scholar 

  41. Chiba, D., Ono, T., Matsukura, F. & Ohno, H. Electric field control of thermal stability and magnetization switching in (Ga,Mn)As. Appl. Phys. Lett. 103, 142418 (2013).

    Article  CAS  Google Scholar 

  42. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-assisted domain wall motion in ferromagnetic semiconductors. Jpn. J. Appl. Phys. 45, 3854–3859 (2006).

    Article  CAS  Google Scholar 

  43. Weisheit, M. et al. Electric-field induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007). This was the first report of voltage control of coercivity in ferromagnetic metals.

    Article  CAS  Google Scholar 

  44. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  45. Duan, C.-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

    Article  CAS  Google Scholar 

  46. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  47. Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

    Article  CAS  Google Scholar 

  48. Nakamura, K. et al. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys. Rev. Lett. 102, 287201 (2009).

    Google Scholar 

  49. Nakamura, K., Akiyama, T., Ito, T., Weinert, M. & Freeman, A. J. Role of an interfacial FeO layer in the electric-field-driven switching of magnetocrystalline anisotropy at the Fe/MgO interface. Phys. Rev. B 81, 220409(R) (2010).

    Article  CAS  Google Scholar 

  50. Bonell, F. et al. Reversible change in the oxidation state and magnetic circular dichroism of Fe driven by an electric field at the FeCo/MgO interface. Appl. Phys. Lett. 102, 152401 (2013).

    Article  CAS  Google Scholar 

  51. Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nature Mater. 11, 64–68 (2012).

    Article  CAS  Google Scholar 

  52. Shiota, Y. et al. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express 2, 063001 (2009).

    Article  CAS  Google Scholar 

  53. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater. 11, 39–43 (2012). This was the first report of voltage-induced magnetization switching in a ferromagnetic metal.

    Article  CAS  Google Scholar 

  54. Kanai, S. et al. Electric field-induced magnetization reversal in perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).

    Article  CAS  Google Scholar 

  55. Kanai, S. et al. In-plane magnetic field dependence of electric field-induced magnetization switching. Appl. Phys. Lett. 103, 074208 (2013).

    Article  CAS  Google Scholar 

  56. Kanai, S. et al. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric-field effect. Appl. Phys. Lett. 104, 212406 (2014).

    Article  CAS  Google Scholar 

  57. Nozaki, T. et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nature Phys. 8, 491–496 (2012).

    Article  CAS  Google Scholar 

  58. Zhu, J. et al. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012).

    Article  CAS  Google Scholar 

  59. Mizunuma, K. et al. Size dependence of magnetic properties of nanoscale CoFeB–MgO magnetic tunnel junctions with perpendicular magnetic easy axis observed by ferromagnetic resonance. Appl. Phys. Express 6, 063002 (2013).

    Article  CAS  Google Scholar 

  60. Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Mater. 10, 853–856 (2011).

    Article  CAS  Google Scholar 

  61. Gerhard, L. et al. Magnetoelectric coupling at metal surfaces. Nature Nanotech. 5, 792–797 (2010).

    Article  CAS  Google Scholar 

  62. Schellekens, A. J., van den Brink, A., Franken, J. H., Swagten, H. J. M. & Koopmans, B. Nature Commun. 3, 847 (2012).

    Article  CAS  Google Scholar 

  63. Chiba, D. et al. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nature Commun. 3, 888 (2012).

    Article  CAS  Google Scholar 

  64. Bauer, U., Emori, S. & Beach, S. D. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nature Nanotech. 8, 411–416 (2013).

    Article  CAS  Google Scholar 

  65. Tokura, Y. Multiferroics – toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310, 1145–1150 (2007).

    Article  CAS  Google Scholar 

  66. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  67. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).

    Article  CAS  Google Scholar 

  68. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008); corrigendum 7, 678 (2008).

    Article  CAS  Google Scholar 

  69. Wu, S. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 9, 756–761 (2010).

    Article  CAS  Google Scholar 

  70. Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011). This was the first report of electric field-induced magnetization reversal in a ferromagnet–multiferrioics heterostructure at room temperature.

    Article  CAS  Google Scholar 

  71. Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).

    Article  CAS  Google Scholar 

  72. Ratcliff, W. II et al. Electric-field-controlled antiferromagnetic domains in epitaxial BiFeO3 thin films probed by neutron diffraction. Phys. Rev. B 87, 140405(R) (2013).

    Article  CAS  Google Scholar 

  73. Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, Ch. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005). This was the first report of magnetoelectric switching of exchange bias in a ferromagnet–multiferrioics heterostructure.

    Article  CAS  Google Scholar 

  74. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nature Mater. 9, 579–585 (2010).

    Article  CAS  Google Scholar 

  75. Echtenkamp, W. & Binek, Ch. Electric control of exchange bias training. Phys. Rev. Lett. 111, 187204 (2013).

    Article  CAS  Google Scholar 

  76. Laukhin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).

    Article  CAS  Google Scholar 

  77. Skumryev, V. et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).

    Article  CAS  Google Scholar 

  78. Nogues, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  CAS  Google Scholar 

  79. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  80. Wu, N. et al. Imaging and control of surface magnetization domains in a magnetoelectric antiferromagnet. Phys. Rev. Lett. 106, 087202 (2011).

    Article  CAS  Google Scholar 

  81. Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  Google Scholar 

  82. Arima, T. Spin-driven ferroelectricity and magneto-electric effects in frustrated magnetic systems. J. Phys. Soc. Jpn 80, 052001 (2011).

    Article  CAS  Google Scholar 

  83. Okumura, K., Haruki, K., Ishihara, T., Hirose, S. & Kimura, T. Multilevel magnetization switching by electric field in c-axis oriented polycrystalline Z-type hexaferrite. Appl. Phys. Lett. 103, 032906 (2013).

    Article  CAS  Google Scholar 

  84. Murakawa, H., Onose, Y. & Tokura, Y. Electric-field switching of a magnetic propagation vector in a helimagnet. Phys. Rev. Lett. 103, 147201 (2009).

    Article  CAS  Google Scholar 

  85. Yamasaki, Y. et al. Electrical control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).

    Article  CAS  Google Scholar 

  86. Lottermoser, T. et al. Magnetic phase control by an electric field effect. Nature 430, 541–544 (2004).

    Article  CAS  Google Scholar 

  87. Saito, M., Ishikawa, K., Konno, S., Taniguchi, K. & Arima, T. Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field. Nature Mater. 8, 634–638 (2009).

    Article  CAS  Google Scholar 

  88. Chun, S. H. et al. Electric field control of non-volatile four-state magnetization at room temperature. Phys. Rev. Lett. 108, 177201 (2012).

    Article  CAS  Google Scholar 

  89. Hearmon, A. J. et al. Electric field control of the magnetic chiralities in ferroaxial multiferroic RbFe(MoO4)2 . Phys. Rev. Lett. 108, 237201 (2012).

    Article  CAS  Google Scholar 

  90. Ghidini, M. et al. Non-volatile electrically driven repeatable magnetization reversal with no applied magnetic field. Nature Commun. 4, 1453 (2012).

    Article  CAS  Google Scholar 

  91. Tokunaga, Y., Iguchi, S., Arima, T. & Tokura, Y. Magnetic-field-induced ferroelectric state in DyFeO3 . Phys. Rev. Lett. 101, 097205 (2008).

    Article  CAS  Google Scholar 

  92. Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nature Mater. 8, 558–562 (2009).

    Article  CAS  Google Scholar 

  93. Tokunaga, Y., Taguchi, Y., Arima, T. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nature Phys. 8, 838–844 (2012). This was the first report of electric field-induced magnetization reversal in single-component multiferroics.

    Article  CAS  Google Scholar 

  94. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article  CAS  Google Scholar 

  95. Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

    Article  CAS  Google Scholar 

  96. Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

    Article  CAS  Google Scholar 

  97. Takahashi, Y., Shimano, R., Kaneko, Y., Murakawa, H. & Tokura, Y. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nature Phys. 8, 121–125 (2012). This was the first report of the observation of the optical magnetoelectric effect mediated by electromagnons in perovskite.

    Article  CAS  Google Scholar 

  98. Takahashi, Y., Yamasaki, Y. & Tokura, Y. Terahertz magnetoelectric resonance enhanced by mutual coupling of electromagnons, Phys. Rev. Lett. 111, 037204 (2013).

    Article  CAS  Google Scholar 

  99. Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magnetoelectric coupling in helical magnets. Phys. Rev. Lett. 98, 027203 (2007).

    Article  CAS  Google Scholar 

  100. Piemov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).

    Article  CAS  Google Scholar 

  101. Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 132701 (2005).

    Google Scholar 

  102. Ishiwata, S., Taguchi, Y., Murakawa, H., Onose, Y. & Tokura, Y. Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643–1646 (2008).

    Article  CAS  Google Scholar 

  103. Kézsmárki, I. et al. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 oxide compound. Phys. Rev. Lett. 106, 057403 (2011).

    Article  CAS  Google Scholar 

  104. Bordács, S. et al. Chirality of matter shows up via spin excitations. Nature Phys. 8, 734–738 (2012).

    Article  CAS  Google Scholar 

  105. Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4 . Phys. Rev. Lett. 101, 117402 (2008).

    Article  CAS  Google Scholar 

  106. Tokura, Y., Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006).

    Article  CAS  Google Scholar 

  107. Vaz, C. A. F., Hoffman, J., Ahn, C. H. & Ramesh, R. Magnetoelectric coupling effects in mutliferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010).

    Article  CAS  Google Scholar 

  108. Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

    Article  CAS  Google Scholar 

  109. Vaz, C. A. F. et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104, 127202 (2010).

    Article  CAS  Google Scholar 

  110. Burton, J. D. & Tsymbal, E. Y. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80, 174406 (2009).

    Article  CAS  Google Scholar 

  111. Lu, H. et al. Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces. Appl. Phys. Lett. 100, 232904 (2012).

    Article  CAS  Google Scholar 

  112. Yin, Y. W. et al. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nature Mater. 12, 397–402 (2013).

    Article  CAS  Google Scholar 

  113. Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010). This was the first report of non-volatile electrical control of carrier spin-polarization in ferroelectric tunnel junctions.

    Article  CAS  Google Scholar 

  114. Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electric switching of spin polarization in multiferroic tunnel junctions. Nature Mater. 11, 289–293 (2012).

    Article  CAS  Google Scholar 

  115. Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

    Article  CAS  Google Scholar 

  116. Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3 . Nature Mater. 10, 753–758 (2011).

    Article  CAS  Google Scholar 

  117. Radaelli, G. et al. Electric control of magnetism at the Fe/BaTiO3 interface. Nature Commun. 5, 3404–3412 (2014).

    Article  CAS  Google Scholar 

  118. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  119. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  CAS  Google Scholar 

  120. Kohda, M., Bergsten, T. & Nitta, J. Manipulating spin-orbit interaction in semiconductors. J. Phys. Soc. Jpn 77, 0310008 (2008).

    Article  CAS  Google Scholar 

  121. Ishihara, J., Ohno, Y. & Ohno, H. Direct imaging of gate-controlled persistent spin helix state in a modulation-doped GaAs/AlGaAs quantum well. Appl. Phys. Express 7, 013001 (2014).

    Article  CAS  Google Scholar 

  122. Sanada, H. et al. Gate control of dynamic nuclear polarization in GaAs quantum wells. Phys. Rev. Lett. 94, 097601 (2005).

    Article  CAS  Google Scholar 

  123. Ono, M., Ishihara, J., Sato, G., Ohno, Y. & Ohno, H. Coherent manipulation of nuclear spins in semiconductors with an electric field. Appl. Phys. Express 6, 033002 (2013).

    Article  CAS  Google Scholar 

  124. Ueno, K. et al. Field-induced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn 83, 032001 (2014).

    Article  CAS  Google Scholar 

  125. Sun, Y., Burton, J. D. & Tsymbal, E. Y. Electrically driven magnetism on a Pd thin film. Phys. Rev. B 81, 064413 (2010).

    Article  CAS  Google Scholar 

  126. Shimizu, S. et al. Electrically tunable anomalous Hall effect in Pt thin films. Phys. Rev. Lett. 111, 21603 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Dietl and S. Kanai for discussions, as well as Y. Tokunaga and Y. Takahashi for useful discussions and help in preparing the manuscript. The work was supported in part by JSPS through the FIRST programme, and Research and Development Project for ICT Key Technology of MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Ohno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nature Nanotech 10, 209–220 (2015). https://doi.org/10.1038/nnano.2015.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing