Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Biosynthesis of magnetosomes is of interest for a range of applications. Here, factors needed for magnetosome biosynthesis are evaluated and new diverse bacteria are engineered to biofabricate magnetic nanoparticles, facilitating translation to biotechnology and nanomedicine.
Here, the authors find a decrease in hepatic phagocytic uptake of nanoparticles in old mice due to age-associated downregulation of the scavenger receptor MARCO, which led to improved tumour delivery and antitumour efficacy of cancer nanomedicine, showing the need to consider age as a factor in therapeutics.
Nanoparticle penetration into tumours is an obstacle to cancer therapeutics. Here the authors show that the tumour vascular basement membrane constitutes a barrier that reduces nanoparticle delivery and demonstrate an immune-driven strategy to overcome the barrier, increasing nanoparticle movement into tumours.
Quantum biological electron transfer has potential in diagnostic and therapeutic settings. Here the authors report the triggered apoptosis of cancer cells using electricical input to wirelessly induce redox interactions at bio-nanoantennae in proximity to cancer cells.
Drawing inspiration from classical semiconductor technology, a strategy to address many quantum dots through a small number of control lines is presented. The two-dimensional array consisting of 16 germanium quantum dots can be tuned in the few-hole regime with odd charge fillings and individually addressable tunnel couplings.
Self-assembled single vacancies in a 2D transition metal dichalcogenide are used to fabricate atomically precise quantum antidots. The resulting antidots have tunable quantum hole states, which are robust to oxygen substitutional doping, and could have applications in quantum information and photocatalysis technologies.
Non-invasive monitoring of oxygen levels has implications in a wide range of applications. Here, the authors report that biological imaging beyond 1,500 nm enables in vivo quantitative assessment of oxyhaemoglobin saturation at vascular resolution with high sensitivity.
A transfer approach for monolayer MoS2 using polypropylene carbonate shows a negligible residue coverage of ~0.08% and an ultralow Ohmic contact resistance of ~78 Ω µm, with an excellent on/off ratio of ~1011 at 15 K.
We developed a technique to fabricate atomically precise quantum antidots with unprecedented robustness and tunable quantum hole states through self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.
This Review analyses the mechanisms of light extraction from perovskite light-emitting diodes and suggests new approaches towards ultrahigh electroluminescence efficiencies.
Reducing cancer-related deaths can only happen with a better understanding of cancer biology and the development of improved, new therapeutics and delivery mechanisms. Nearly all cancer research is dependent upon the models being used, the model’s accuracy, and appropriate validation and benchmarking. Here the need for such considerations is discussed in line with the goal of the Cancer Moonshot.
An efficient control strategy is designed for quantum dot arrays, drawing inspiration from classical semiconductor technology. A two-dimensional array of 16 semiconductor quantum dots is operated using only a few shared control lines.
Lithographically assisted, precise arraying of three-dimensional DNA origami nanostructures allows the fabrication of molecularly addressable nanotextured surfaces from the micro- to millimetre scales.
Dirac magnetoexcitons with non-trivial nanoscale electrodynamics are formed from the excitation of Landau levels in charge-neutral graphene. Here, the Dirac magnetoexciton dispersion is directly imaged up to 7 T via a magneto cryogenic near-field microscope.
An untethered phototactic soft machine composed of poly(N-isopropylacrylamide) hydrogel blended with graphene oxide and gold nanoparticles demonstrates underwater full-space artificial phototaxis and manoeuvres around obstacles in natural sunlight.