Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Nanopatterned materials provide control over mechanical vibrations. This allows for the complete damping of vibrations over more than 5 GHz and for the propagation of hypersonic guided modes at room temperature.
The combination of catalytic platinum particles, nanozymes and a CRISPR-based reaction allows for the quantification of non-coding RNAs at the picomolar range. This assay, CrisprZyme, has a colorimetric readout and works at room temperature without preamplification.
A series of emergent electronic orders are observed in an antiparallel twisted WSe2 bilayer. The discoveries provide a powerful platform for simulating quantum phenomena in strongly correlated materials.
Quantitative polymerase chain reaction allows the real-time detection of nucleic acids in human samples, representing a gold standard for infection detection, but it cannot be easily converted into a point-of-care approach. Here a strategy is proposed to leverage plasmonic polymerase chain reaction to achieve multiplexed, fluorescence detection of SARS-CoV-2 RNA from human saliva and nasal specimen, showing promise as a point-of-care approach.
Ultrafine catalysts are desirable for the reduction of fuel cell costs but are intrinsically unstable. Here the authors report graphene-nanopocket-encaged PtCo catalysts with exceptional durability under the demanding ultralow-Pt-loading condition while delivering a satisfactory fuel cell performance.
Perovskite quantum dots have been proven promising for photonic and optoelectronic applications, particularly, as bright and narrow band emitters for display technology. Despite the advantageous properties, the stability issues have to be resolved to unleash the full industrial potential of perovskite quantum dots in display technology.
Using our company’s CO2 electrolysers as a model, we describe the challenges involved in incorporating nanomaterial catalysts into industrial-scale electrolysers and suggest ways to more efficiently realize the performance improvements of academic-scale novel nanomaterials at industrial scales.
NMR measurements show that the interface between the inorganic and organic components can be tailored to design a highly conducting hybrid solid electrolyte.
While neutrophils are the first line of defence against infections and inflammation, their unrestricted recruitment and constant activation might result in prolonged inflammation and sharpening of specific pathological conditions. Here the authors develop a strategy to specifically target activated, pro-inflammatory neutrophils and neutrophil–platelet complexes to deliver therapeutics in the context of a murine model of venous thrombosis.
A phenylboronic acid-modified hetero-octameric Mycobacterium smegmatis porin A nanopore can directly distinguish 11 types of nucleoside monophosphates with a 0.996 accuracy.
Sub-molecular spectroscopy enables the real-space study of incoherent and coherent electronic energy transfer in artificial molecular donor–acceptor systems and their dependence on the molecular arrangement.
The recent advent of transition metal dichalcogenides moiré materials is a promising platform for studying correlated electron phenomena and moiré exciton physics.
This Review elaborates on the recent developments and the future opportunities and challenges of fundamental research on semiconductor moiré materials, with a particular focus on transition metal dichalcogenides.