Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
To determine the physiologically relevant oligomeric form of membrane proteins is extremely challenging. Now an elegant method of counting the oligomers in membrane proteins in near-native states is presented, using photobleaching and nanodiscs formed directly from cellular membranes.
Native-nanoBleach, a single-molecule imaging technique with a spatial resolution of ~10 nm, quantifies the oligomeric distribution of membrane proteins directly from native membranes at endogenous expression levels with their proximal native membrane environment using amphipathic copolymer nanodiscs.
Mechanistic origins of force stability and bond kinetics of interaction of the receptor-binding domain from the SARS-CoV-2 spike protein with angiotensin-converting enzyme 2, a key selection factor for mutations, are revealed at the single-molecule resolution using magnetic tweezers and molecular dynamics simulations.
The development of a tandem catalyst, consisting of two distinct nanoscale-engineered layers, enables efficient multicarbon production with high CO2 utilization in an acidic CO2 electroreduction environment.
Stacking graphene in the rhombohedral order to the tetralayer yields stronger Coulomb interactions, which results in insulating and metallic states with spontaneous symmetry breaking in spin, valley and layer degrees of freedom.
Catalytic metals dissolved in liquid gallium remain atomically dispersed and dynamically active. The configurational dynamics of the metal atoms enables them to adopt a specific configurational alignment with the reactants to facilitate selective propylene synthesis from two different hydrocarbon feedstocks.
Nebulized mRNA delivery has broad therapeutic potential but has proven challenging. Here, the authors report on a modified lipid nanoparticle with improved conditions to allow nebulization and demonstrate its application for delivering mRNA to the lungs.
Catalytic metals dissolved in a liquid gallium solvent remain atomically dispersed. Alignments among the liquid atoms and reactants facilitate selective propylene synthesis from various hydrocarbon feedstocks.
Here the authors show that the trophi or jaws of the chitinous masticatory apparatus of marine and freshwater zooplankton rotifers can grind microplastics, independent of polymer composition, and generate particulate nanoplastics, which may accelerate the nanoplastic flux in global surface waters.
A DNA origami nanoturbine is designed as a rotary motor that draws power from an ion gradient or electrical potential across a solid-state nanopore. Single-molecule experiments demonstrate that the turbine can drive a DNA bundle into sustained unidirectional rotation, with the preferred rotation direction set by the chirality of the turbine.
Nanoscale inhomogeneity is a major barrier to achieving high nonlinear efficiency in nanophotonic lithium-niobate waveguides. Using adapted poling in the waveguide — to circumvent the inhomogeneity and restore ideal phase matching — is shown to break through this efficiency limit.
Synthetic nanoparticles coated with cell membranes show immune evasion and circulate longer. Here, a genetically engineered cell membrane expressing a SpyCatcher anchor is used as a modular nanotherapeutic drug delivery platform for high-affinity targeting and suppression of ovarian cancer.
Rheumatoid arthritis involves both inflammation and immune dysfunction, yet most therapies only target one aspect. Here, the authors report on ceria nanoparticle vesicle hybrids producing anti-inflammatory action and immunomodulation to relieve symptoms and restore normal function.
A nanoscale DNA origami turbine is shown to perform mechanical rotation by directly harvesting transmembrane potential energy from an ion-concentration gradient across a solid-state nanopore. The direction of rotation is set by the designed chiral twist in the turbine’s blades.
A major limiting factor for nonlinear efficiencies in lithium niobate waveguides, nanoscale thickness inhomogeneity, has been tackled using a fabrication approach called adapted poling.
An autonomous DNA-origami nanomachine powered by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel performs rhythmic pulsations is demonstrated. In combination with a passive follower, the nanomachine acts as a mechanical driver with molecular precision.