Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tuning silence: conditional systems for RNA interference

Abstract

RNA interference (RNAi) has emerged as a powerful tool to downregulate the expression of specific genes. Drug-inducible systems allowing for conditional RNAi that offer the unique potential to modulate expression of virtually any endogenous gene in the cell have been recently developed. Their applications are very broad, ranging from basic studies of gene function to translational research including modeling of human diseases, analysis of potential side effects of candidate drugs, testing of gene-based therapies and loss-of-function screens. Here we summarize the state of the art of systems allowing for drug-controllable knockdown, and provide a description of their current and future applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current and potential application of conditional RNAi.
Figure 2: Design and mode of actions of the most commonly used reversible, drug-regulated systems for conditional knockdown.
Figure 3: Design and mode of actions of the irreversible systems for conditional knockdown.

Similar content being viewed by others

References

  1. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  2. Hannon, G.J. & Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  Google Scholar 

  3. Brummelkamp, T.R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  Google Scholar 

  4. Dorsett, Y. & Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3, 318–329 (2004).

    Article  CAS  Google Scholar 

  5. Zeng, Y., Cai, X. & Cullen, B.R. Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol. 392, 371–380 (2005).

    Article  CAS  Google Scholar 

  6. van de Wetering, M. et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609–615 (2003).

    Article  CAS  Google Scholar 

  7. Hoeflich, K.P. et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66, 999–1006 (2006).

    Article  CAS  Google Scholar 

  8. Ohkawa, J. & Taira, K. Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 snRNA promoter. Hum. Gene Ther. 11, 577–585 (2000).

    Article  CAS  Google Scholar 

  9. Chen, Y., Stamatoyannopoulos, G. & Song, C.Z. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res. 63, 4801–4804 (2003).

    CAS  PubMed  Google Scholar 

  10. Matsukura, S., Jones, P.A. & Takai, D. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 31, e77 (2003).

    Article  Google Scholar 

  11. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  Google Scholar 

  12. Ngo, V.N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    Article  CAS  Google Scholar 

  13. Gupta, S., Schoer, R.A., Egan, J.E., Hannon, G.J. & Mittal, V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932 (2004).

    Article  CAS  Google Scholar 

  14. Amar, L., Desclaux, M., Faucon-Biguet, N., Mallet, J. & Vogel, R. Control of small inhibitory RNA levels and RNA interference by doxycycline induced activation of a minimal RNA polymerase III promoter. Nucleic Acids Res. 34, e37 (2006).

    Article  Google Scholar 

  15. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

    Article  CAS  Google Scholar 

  16. Szulc, J., Wiznerowicz, M., Sauvain, M.O., Trono, D. & Aebischer, P. A versatile tool for conditional gene expression and knockdown. Nat. Methods 3, 109–116 (2006).

    Article  CAS  Google Scholar 

  17. Arrighi, J.F. et al. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J. Virol. 78, 10848–10855 (2004).

    Article  CAS  Google Scholar 

  18. Miyake, K. et al. Development of cellular models for ribosomal protein S19 (RPS19)-deficient diamond-blackfan anemia using inducible expression of siRNA against RPS19. Mol. Ther. 11, 627–637 (2005).

    Article  CAS  Google Scholar 

  19. Toniatti, C., Bujard, H., Cortese, R. & Ciliberto, G. Gene therapy progress and prospects: transcription regulatory systems. Gene Ther. 11, 649–657 (2004).

    Article  CAS  Google Scholar 

  20. Zeng, Y. & Cullen, B.R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem. 280, 27595–27603 (2005).

    Article  CAS  Google Scholar 

  21. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  Google Scholar 

  22. Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    Article  CAS  Google Scholar 

  23. Garcia-Otin, A.L. & Guillou, F. Mammalian genome targeting using site-specific recombinases. Front. Biosci. 11, 1108–1136 (2006).

    Article  CAS  Google Scholar 

  24. Tiscornia, G., Tergaonkar, V., Galimi, F. & Verma, I.M. CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc. Natl. Acad. Sci. USA 101, 7347–7351 (2004).

    Article  CAS  Google Scholar 

  25. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. USA 101, 10380–10385 (2004).

    Article  CAS  Google Scholar 

  26. Meissner, A. & Jaenisch, R. Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439, 212–215 (2006).

    Article  CAS  Google Scholar 

  27. Chang, H.S., Lin, C.H., Chen, Y.C. & Yu, W.C. Using siRNA technique to generate transgenic animals with spatiotemporal and conditional gene knockdown. Am. J. Pathol. 165, 1535–1541 (2004).

    Article  CAS  Google Scholar 

  28. Li, M.J. & Rossi, J.J. Lentiviral vector delivery of recombinant small interfering RNA expression cassettes. Methods Enzymol. 392, 218–226 (2005).

    Article  CAS  Google Scholar 

  29. Tiscornia, G., Singer, O., Ikawa, M. & Verma, I.M. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848 (2003).

    Article  CAS  Google Scholar 

  30. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    Article  CAS  Google Scholar 

  31. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  32. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  Google Scholar 

  33. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  Google Scholar 

  34. Kuninger, D. et al. Gene disruption by regulated short interfering RNA expression, using a two-adenovirus system. Hum. Gene Ther. 15, 1287–1292 (2004).

    Article  CAS  Google Scholar 

  35. Li, L. et al. Evaluating hypoxia-inducible factor-1α as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Res. 65, 7249–7258 (2005).

    Article  CAS  Google Scholar 

  36. Matthess, Y. et al. Conditional inhibition of cancer cell proliferation by tetracycline-responsive, H1 promoter-driven silencing of PLK1. Oncogene 24, 2973–2980 (2005).

    Article  CAS  Google Scholar 

  37. Ito, T. et al. An inducible short-hairpin RNA vector against osteopontin reduces metastatic potential of human esophageal squamous cell carcinoma in vitro and in vivo. Clin. Cancer Res. 12, 1308–1316 (2006).

    Article  CAS  Google Scholar 

  38. Lin, X. et al. Development of a tightly regulated U6 promoter for shRNA expression. FEBS Lett. 577, 376–380 (2004).

    Article  CAS  Google Scholar 

  39. Leenders, F. et al. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J. 23, 3303–3313 (2004).

    Article  CAS  Google Scholar 

  40. Brown, S.A. et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693–696 (2005).

    Article  CAS  Google Scholar 

  41. Yu, J. & McMahon, A.P. Reproducible and inducible knockdown of gene expression in mice. Genesis 44, 252–261 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Trono.

Ethics declarations

Competing interests

M.W. and D.T. have patented some of the technologies described in this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiznerowicz, M., Szulc, J. & Trono, D. Tuning silence: conditional systems for RNA interference. Nat Methods 3, 682–688 (2006). https://doi.org/10.1038/nmeth914

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing