Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electronic transport in polycrystalline graphene

Abstract

Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics1,2,3, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques4,5,6,7,8,9,10,11,12,13. Grain boundaries, intrinsic topological defects of polycrystalline materials14, are expected to markedly alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain-boundary structure we find two distinct transport behaviours—either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need to introduce bulk bandgaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of grain boundaries in graphene.
Figure 2: Grain boundaries in graphene—two distinct transport behaviours.
Figure 3: Electronic transport through grain boundaries in graphene from first principles.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  2. Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 10, 20–27 (2007).

    Article  CAS  Google Scholar 

  3. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  4. Albrecht, T. R., Mizes, H. A., Nogami, J., Park, S-i. & Quate, C. F. Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects. Appl. Phys. Lett. 52, 362–364 (1988).

    Article  CAS  Google Scholar 

  5. Clemmer, C. R. & Beebe, T. P. Jr Graphite: A mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science 251, 640–642 (1991).

    Article  CAS  Google Scholar 

  6. Heckl, W. M. & Binnig, G. Domain walls on graphite mimic DNA. Ultramicroscopy 42, 1073–1078 (1992).

    Article  Google Scholar 

  7. C˘ervenka, J. & Flipse, C. F. J. Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects. Phys. Rev. B 79, 195429 (2009).

    Article  Google Scholar 

  8. C˘ervenka, J., Katsnelson, M. I. & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys. 5, 840–844 (2009).

    Article  Google Scholar 

  9. Coraux, J. et al. Growth of graphene on Ir(111). New J. Phys. 11, 023006 (2009).

    Article  Google Scholar 

  10. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).

    Article  CAS  Google Scholar 

  11. Loginova, E., Nie, S., Thurmer, K., Bartelt, N. C. & McCarty, K. F. Defects of graphene on Ir(111): Rotational domains and ridges. Phys. Rev. B 80, 085430 (2009).

    Article  Google Scholar 

  12. Park, H. J., Meyer, J., Roth, S. & Skákalová, V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010).

    Article  CAS  Google Scholar 

  13. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nature Nanotech. 5, 326–329 (2010).

    Article  CAS  Google Scholar 

  14. Sutton, A. P. & Balluffi, R. W. Interfaces in Crystalline Materials (Clarendon Press, 1995).

    Google Scholar 

  15. Read, W. T. & Shockley, W. Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275–289 (1950).

    Article  CAS  Google Scholar 

  16. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010).

    Article  Google Scholar 

  17. White, C. T. & Mintmire, J. W. Density of states reflects diameter in nanotubes. Nature 394, 29–30 (1998).

    Article  CAS  Google Scholar 

  18. Mintmire, J. W. & White, C. T. Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81, 2506–2509 (1998).

    Article  CAS  Google Scholar 

  19. Carraro, C. & Nelson, D. R. Grain-boundary buckling and spin-glass models of disorder in membranes. Phys. Rev. E 48, 3082–3090 (1993).

    Article  CAS  Google Scholar 

  20. Simonis, P. et al. STM study of a grain boundary in graphite. Surf. Sci. 511, 319–322 (2002).

    Article  CAS  Google Scholar 

  21. Liu, Y. & Yakobson, B. I. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178–2183 (2010).

    Article  CAS  Google Scholar 

  22. Koskinen, P., Malola, S. & Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008).

    Article  Google Scholar 

  23. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  CAS  Google Scholar 

  24. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys. 5, 222–226 (2009).

    Article  CAS  Google Scholar 

  25. Stander, N., Huard, B. & Goldhaber-Gordon, D. Evidence for Klein tunneling in graphene pn junctions. Phys. Rev. Lett. 102, 026807 (2009).

    Article  CAS  Google Scholar 

  26. Xia, F., Farmer, D. B., Lin, Y-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    Article  CAS  Google Scholar 

  27. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  29. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  CAS  Google Scholar 

  30. Brandbyge, M., Mozos, J-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. J. Palacios, C-H. Park and D. Strubbe for their comments. This work was supported by National Science Foundation Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, US Department of Energy under Contract No. DE-AC02-05CH11231. The structural parameters were determined using theoretical techniques and computer codes supported by NSF and the electronic transport calculations were carried out under the auspices of BES support. O.V.Y. acknowledges financial support of the Swiss National Science Foundation (grant no. PBELP2-123086). Computational resources have been provided by NSF through TeraGrid resources at NICS (Kraken) and by DOE at Lawrence Berkeley National Laboratory’s NERSC facility.

Author information

Authors and Affiliations

Authors

Contributions

O.V.Y. proposed the project, carried out derivation, computations and analyses and wrote the manuscript. S.G.L. directed the research, proposed analyses, interpreted results and edited the manuscript.

Corresponding authors

Correspondence to Oleg V. Yazyev or Steven G. Louie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazyev, O., Louie, S. Electronic transport in polycrystalline graphene. Nature Mater 9, 806–809 (2010). https://doi.org/10.1038/nmat2830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing