Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organization and mobility of water in amorphous and crystalline trehalose

Abstract

The disaccharide trehalose is accumulated by microorganisms, such as yeasts, and multicellular organisms, such as tardigrades1,2, when conditions of extreme drought occur. In this way these organisms can withstand dehydration through the formation of an intracellular carbohydrate glass, which, with its high viscosity and hydrogen-bonding interactions3,4, stabilizes and protects the integrity of complex biological structures and molecules. This property of trehalose can also be harnessed in the stabilization of liposomes5, proteins6 and in the preservation of red blood cells7, but the underlying mechanism of bioprotection is not yet fully understood. Here we use positron annihilation lifetime spectroscopy to probe the free volume of trehalose matrices; specifically, we develop a molecular picture of the organization and mobility of water in both amorphous and crystalline states. Whereas in amorphous matrices, water increases the average intermolecular hole size, in the crystalline dihydrate it is organized as a confined one-dimensional fluid in channels of fixed diameter that allow activated diffusion of water in and out of the crystallites. We present direct real-time evidence of water molecules unloading reversibly from these channels, thereby acting as both a sink and a source of water in low-moisture systems. We postulate that this behaviour may provide the overall stability required to keep organisms viable through dehydration conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean radius of holes in amorphous trehalose as a function of the water content at 25C.
Figure 2: Transitions in trehalose dihydrate heated in open cell under vacuum.
Figure 3: Isothermal dehydration of trehalose dihydrate under vacuum.

Similar content being viewed by others

Steven G. Harrellson, Michael S. DeLay, … Ozgur Sahin

References

  1. Crowe, J. H. & Crowe, L. M. Preservation of mammalian cells—learning nature's tricks. Nature Biotechnol. 18, 145–146 (2000).

    Article  Google Scholar 

  2. Guo, N., Puhlev, I., Brown, D. R., Mansbridge, J. & Levine, F. Trehalose expression confers desiccation tolerance on human cells. Nature Biotechnol. 18, 168–171 (2000).

    Article  Google Scholar 

  3. Crowe, J. H., Crowe, L. M. & Chapman, D. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 223, 701–703 (1984).

    Article  Google Scholar 

  4. Crowe, J. H., Carpenter, J. F. & Crowe, L. M. The role of vitrification in anhydrobiosis. Ann. Rev. Physiol. 60, 73–103 (1998).

    Article  Google Scholar 

  5. Crowe, L. M. et al. Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochim. Biophys. Acta 861, 131–136 (1986).

    Article  Google Scholar 

  6. Cicerone, M. T. & Soles, C. L. Fast dynamics and stabilization of proteins: Binary glasses of trehalose and glycerol. Biophys. J. 86, 3836–3845 (2004).

    Article  Google Scholar 

  7. Wolkers, W. F., Walker, N. J., Tamari, Y., Tablin, F. & Crowe, J. H. Towards a clinical application of freeze-dried human platelets. Cell Preserv. Technol. 1, 175–188 (2003).

    Article  Google Scholar 

  8. Brown, G. M. et al. The crystal structure of α,α-trehalose dihydrate from three independent X-ray determinations. Acta Crystallogr. B 28, 3145–3158 (1972).

    Article  Google Scholar 

  9. Taga, T., Senma, M. & Osaki, K. The crystal and molecular structure of trehalose dihydrate. Acta Crystallogr. B 28, 3258–3263 (1972).

    Article  Google Scholar 

  10. Sussich, F., Skopec, C., Brady, J. & Cesàro, A. Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr. Res. 334, 165–176 (2001).

    Article  Google Scholar 

  11. McGarvey, O. S., Kett, V. L. & Craig, D. Q. M. An investigation into the crystallization of α,α-trehalose from the amorphous state. J. Phys. Chem. B 107, 6614–6620 (2003).

    Article  Google Scholar 

  12. Sussich, F., Bortoluzzi, S. & Cesàro, A. J. Trehalose dehydration under confined conditions. Thermochim. Acta 391, 137–150 (2002).

    Article  Google Scholar 

  13. Green, J. L. & Angell, C. A. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 93, 2880–2882 (1989).

    Article  Google Scholar 

  14. Willart, J. F., Danede, F., De Gusseme, A., Descamps, M. & Neves, C. Origin of the structural transformation of trehalose dihydrate upon dehydration. J. Phys. Chem. B 107, 11158–11162 (2003).

    Article  Google Scholar 

  15. Furuki, T., Kishi, A. & Sakurai, M. De- and rehydration behaviour of α,α-trehalose dihydrate under humidity-controlled atmospheres. Carbohydr. Res. 340, 429–438 (2005).

    Article  Google Scholar 

  16. Sussich, F., Urbani, R., Princivalle, F. & Cesàro, A. Polymorphic amorphous and crystalline forms of trehalose. J. Am. Chem. Soc. 120, 7893–7899 (1998).

    Article  Google Scholar 

  17. Crowe, L. M., Reid, D. S. & Crowe, J. H. Is trehalose special for preserving dry biomaterials? Biophys. J. 71, 2087–2093 (1996).

    Article  Google Scholar 

  18. Chen, T., Fowler, A. & Toner, M. L. Literature review: Supplemented phase diagram of the trehalose-water binary mixture. Cryobiology 40, 277–282 (2000).

    Article  Google Scholar 

  19. Aldous, B. J., Auffret, A. D. & Franks, F. The crystallization of hydrates from amorphous carbohydrates. Cryo-Lett. 16, 181–186 (1995).

    Google Scholar 

  20. Pethrick, R. A. Positron annihilation—a probe for nanoscale voids and free volume? Prog. Polym. Sci. 22, 1–47 (1997).

    Article  Google Scholar 

  21. Tao, T. J. Positronium annihilation in molecular substances. J. Chem. Phys. 56, 5499 (1972).

    Article  Google Scholar 

  22. Eldrup, M., Lightbody, D. & Sherwood, J. N. The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 63, 51–58 (1981).

    Article  Google Scholar 

  23. Nakanishi, H., Wang, S. J. & Jean, Y. C. in Positron Annihilation Studies of Fluids (ed. Sharma, S. C.) 292 (World Scientific, Singapore, 1988).

    Google Scholar 

  24. Olson, B. G., Prodpran, T., Jamieson, A. M. & Nazarenko, S. Positron annihilation in syndiotactic polystyrene containing α and β crystalline forms. Polymer 43, 6775–6784 (2002).

    Article  Google Scholar 

  25. Kilburn, D. et al. Water in glassy carbohydrates: Opening it up at the nanolevel. J. Phys. Chem. B 108, 12436–12441 (2004).

    Article  Google Scholar 

  26. Kilburn, D., Claude, J., Schweizer, T., Alam, A. & Ubbink, J. Carbohydrate polymers in amorphous states: An integrated thermodynamic and nanostructural investigation. Biomacromolecules 6, 864–879 (2005).

    Article  Google Scholar 

  27. Mogenson, O. Positron Annihilation in Chemistry (Springer, Berlin, 1995).

    Book  Google Scholar 

  28. Franks, F. Water Second Edition: A Matrix of Life (The Royal Society of Chemistry, Cambridge, 2000).

    Google Scholar 

  29. Crank, J. The Mathematics of Diffusion 2nd edn, Ch. 4, 48 (Oxford Univ. Press, Oxford, 1975) Eq. (4.18).

    Google Scholar 

  30. Suresh, S. J. & Naik, V. M. Hydrogen bond thermodynamic properties of water from dielectric constant data. J. Chem. Phys. 113, 9727–9732 (2000).

    Article  Google Scholar 

  31. Tromp, R. H., Parker, R. & Ring, S. G. Water diffusion in glasses of carbohydrates. Carbohydr. Res. 303, 199–205 (1997).

    Article  Google Scholar 

  32. Taylor, L. S. & York., P. Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration. J. Pharm. Sci. 87, 347–355 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M.-I. Alonso and J.-P. Marquet for technical assistance. This research was sponsored by a postdoctoral grant from Nestec Ltd to the University of Bristol (D.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Job Ubbink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilburn, D., Townrow, S., Meunier, V. et al. Organization and mobility of water in amorphous and crystalline trehalose. Nature Mater 5, 632–635 (2006). https://doi.org/10.1038/nmat1681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing