Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanical properties of ultrahigh-strength gold nanowires

Abstract

Nanowires have attracted considerable interest as nanoscale interconnects and as the active components of both electronic and electromechanical devices. Nanomechanical measurements are a challenge, but remain key to the development and processing of novel nanowire-based devices. Here, we report a general method to measure the spectrum of nanowire mechanical properties based on nanowire bending under the lateral load from an atomic force microscope tip. We find that for Au nanowires, Young's modulus is essentially independent of diameter, whereas the yield strength is largest for the smallest diameter wires, with strengths up to 100 times that of bulk materials, and substantially larger than that reported for bulk nanocrystalline metals (BNMs)1,2,3,4,5. In contrast to BNMs, nanowire plasticity is characterized by strain-hardening, demonstrating that dislocation motion and pile-up is still operative down to diameters of 40 nm. Possible origins for the different mechanical properties of nanowires and BNMs are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The bending test for nanowire mechanical measurements.
Figure 2: Mechanical deformation of a 200-nm Au nanowire.
Figure 3: Measured Young's modulus and yield-strength values for Au nanowires.
Figure 4: Plastic deformation of Au nanowires.

References

  1. Champion, Y. et al. Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310–311 (2003).

    Article  CAS  Google Scholar 

  2. Lu, L., Sui, M. L. & Lu, K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463–1466 (2000).

    Article  CAS  Google Scholar 

  3. Budrovic, Z., Swygenhoven, H. V., Derlet, P. M., Petegem, S. V. & Schmitt, B. Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304, 273–276 (2004).

    Article  CAS  Google Scholar 

  4. Lu, L., Shen, Y. F., Chen, X. H., Qian, L. H. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).

    Article  CAS  Google Scholar 

  5. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  6. Levitt, A. P. Whisker Technology (A. P. Levitt) Ch. 6 (Wiley-Interscience, New York, 1970).

    Google Scholar 

  7. Yu, M. F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  8. Poncharal, P., Wang, Z. L., Ugarte, D. & De Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999).

    Article  CAS  Google Scholar 

  9. Gao, R. P. et al. Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625 (2000).

    Article  CAS  Google Scholar 

  10. Wong, E. W., Sheehan, P. E. & Lieber, C. M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997).

    Article  CAS  Google Scholar 

  11. Salvetat, J. P. et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999).

    Article  CAS  Google Scholar 

  12. Salvetat, J. P. et al. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11, 161–165 (1999).

    Article  CAS  Google Scholar 

  13. Kis, A. et al. Shear and Young's moduli of MoS2 nanotube ropes. Adv. Mater. 15, 733–736 (2003).

    Article  CAS  Google Scholar 

  14. Cuenot, S., Champagne, S. D. & Nysten, B. Elastic modulus of polypyrrole nanotubes. Phys. Rev. Lett. 85, 1690–1693 (2000).

    Article  CAS  Google Scholar 

  15. Walters, D. A. et al. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999).

    Article  CAS  Google Scholar 

  16. Tombler, T. W. et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000).

    Article  CAS  Google Scholar 

  17. Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 1564011 (2003).

    Article  Google Scholar 

  18. Falvo, M. R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997).

    Article  CAS  Google Scholar 

  19. Li, X. D., Gao, H. S., Murphy, C. J. & Caswell, K. K. Nanoindentation of silver nanowires. Nano Lett. 3, 1495–1498 (2003).

    Article  CAS  Google Scholar 

  20. Agrait, N., Rubio, G. & Vieira, S. Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995–3998 (1995).

    Article  CAS  Google Scholar 

  21. Pan, Z. W. et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl. Phys. Lett. 74, 3152–3154 (1999).

    Article  CAS  Google Scholar 

  22. Barrett, C. R., Nix, W. D. & Tetelman, A. S. in The Principles of Engineering Materials Ch. 6–8 (Prentice-Hall, Englewood Cliffs, New Jersey, 1973).

    Google Scholar 

  23. Koops, H. W. P., Kaya, A. & Weber, M. Fabrication and characterization of platinum nanocrystalline material grown by electron-beam induced deposition. J. Vac. Sci. Technol. B 13, 2400–2403 (1995).

    Article  CAS  Google Scholar 

  24. Gere, J. M. & Timoshenko, S. P. in Mechanics of Materials Ch. 5.1.8 (PWS-KENT, Boston, Massachusettes, 1990).

    Google Scholar 

  25. Schwarz, U. D., Koster, P. & Wiesendanger, R. Quantitative analysis of lateral force microscopy experiments. Rev. Sci. Instrum. 67, 2560–2567 (1996).

    Article  CAS  Google Scholar 

  26. Callister, W. D. Jr in Materials Science and Engineering 3rd edn, Ch. 6–8 (Wiley, New York, 1994).

    Google Scholar 

  27. Espinosa, H. D., Prorok, B. C. & Peng, B. Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solid 52, 667–689 (2004).

    Article  CAS  Google Scholar 

  28. Kiely, J. D. & Houston, J. E. Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588–12594 (1998).

    Article  CAS  Google Scholar 

  29. Corcoran, S. G. & Colton, R. J. Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057–R16060 (1997).

    Article  CAS  Google Scholar 

  30. Schiotz, J. & Jacobsen, K. W. A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003).

    Article  CAS  Google Scholar 

  31. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    Article  CAS  Google Scholar 

  32. Kovtyukhova, N. I. & Mallouk, T. E. Nanowires as building blocks for self-assembling logic and memory circuits. Chem. Eur. J. 8, 4354–4363 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Monaghan and Patrick Prendergast for the valuable discussions. This work was supported by Science Foundation Ireland under grant 00/PI.1/C077A.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Boland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 - S5 (PDF 641 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Heidelberg, A. & Boland, J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater 4, 525–529 (2005). https://doi.org/10.1038/nmat1403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing