Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bismuth-induced embrittlement of copper grain boundaries

Abstract

Catastrophic brittle fracture of crystalline materials is one of the best documented but most poorly understood fundamental phenomena in materials science. Embrittlement of copper by bismuth is a classic example of this phenomenon. Because brittle fracture in any structural material can involve human tragedy, a better understanding of the mechanisms behind it is of the highest interest. In this study, we use a combination of two state-of-the-art atomic characterization techniques and ab initio theoretical materials simulations to investigate the geometric and electronic structure of a copper grain boundary with and without bismuth. Only with this unique combination of methods are we able to observe the actual distribution of bismuth in the boundary and detect changes in the electronic structure caused by the bismuth impurity. We find that the copper atoms that surround the segregated bismuth in the grain boundary become embrittled by taking on a more zinc-like electronic structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic resolution Z-contrast images of the grain-boundary region of a symmetric 36.8° <001> tilt boundary.
Figure 2: Experimental Cu-L3 near-edge structure from the grain boundary and the adjacent grains.
Figure 3: Calculated Cu-L3 near-edge structure from the boundary region.
Figure 4: Comparison of the DOS between the Bi-doped Cu grain boundary (7 nearest neighbours of Bi) and bulk Cu.
Figure 5: Calculated charge density from copper grain-boundary region.

Similar content being viewed by others

References

  1. Losch, W. A new model of grain boundary failure in temper embrittled steel. Acta Metall. 27, 1885–1892 (1979).

    Article  CAS  Google Scholar 

  2. Messmer, R.P. & Briant, C.L. The role of chemical bonding in grain boundary embrittlement. Acta Metall. 30, 457–467 (1982).

    Article  CAS  Google Scholar 

  3. Rice, J.R. & Wang, J.-S. Embrittlement of interfaces by solute segregation. Mater. Sci. Eng. A 107, 23–40 (1989).

    Article  Google Scholar 

  4. Wu, R., Freeman, A.J. & Olson, G.B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science 265, 376–380 (1994).

    Article  CAS  Google Scholar 

  5. Miolinari, C. & Joud, J.C. in Physical Chemistry of the Solid State: Applications to Metals and their Compounds (ed. Lacombe, P.) 151–163 (Elsevier, Amsterdam, 1984).

    Google Scholar 

  6. Haydock, R. The mobility of bonds at metal surfaces. J. Phys. C 14, 3807–3816 (1981).

    Article  CAS  Google Scholar 

  7. Hondros, E.D. & McLean, D. Cohesion margin of copper. Phil. Mag. 29, 771–795 (1974).

    Article  CAS  Google Scholar 

  8. Russell, J.D. & Winter, A.T. Orientation effects in embrittlement of copper bicrystals by bismuth. Scripta metall. 19, 575–579 (1985).

    Article  CAS  Google Scholar 

  9. Li, G.H. & Zhang, L.D. Relationship between misorientation and bismuth induced embrittlement of [001] tilt boundary in copper bicrystal. Scripta metall. 32, 1335–1340 (1995).

    Article  CAS  Google Scholar 

  10. Chikwembani, S. & Weertman, J. Fatigue and fracture of copper-bismuth bicrystals. Scripta Metall. 19, 1499–1502 (1985).

    Article  CAS  Google Scholar 

  11. Miura, H., Nakata, H., Sakai, T., Kato, M. & Mori, T. Temperature dependence of embrittlement of Cu[001] symmetrical tilt boundaries induced by Bi segregation. J. Jpn Inst. Metals 58, 477–482 (1994).

    Article  CAS  Google Scholar 

  12. Smith, D.A., Vitek, V. & Pond, R.C. Computer simulation of symmetrical high angle boundaries in aluminium. Acta metall. 25, 475–483 (1977).

    Article  CAS  Google Scholar 

  13. Voce, E. & Hallowes, A.P.C. The mechanism of the embrittlement of deoxidized copper by bismuth. J. Inst. Metals 74, 323–376 (1947).

    Google Scholar 

  14. Donald, A.M. & Brown, L.M. Grain boundary faceting in Cu-Bi alloys. Acta Metall. 27, 59–66 (1979).

    Article  CAS  Google Scholar 

  15. Ference, T.G. & Balluffi, R.W. Observation of a reversible grain boundary faceting transition induced by changes of composition. Scripta Metall. 22, 1929–1934 (1988).

    Article  CAS  Google Scholar 

  16. Alber, U., Müllejans, H. & Rühle, M. Bismuth segregation at copper grain boundaries. Acta Mater. 47, 4047–4060 (1999).

    Article  CAS  Google Scholar 

  17. Sigle, W., Chang, L.-S. & Gust, W. On the correlation between grain-boundary segregation, faceting and embrittlement in Bi-doped Cu. Phil. Mag. A 82, 1595–1608 (2002).

    Article  CAS  Google Scholar 

  18. Chang, L.-S., Rabkin, E., Straumal, B.B., Baretzky, B. & Gust, W. Thermodynamic aspects of the grain boundary segregation in Cu(Bi) alloys. Acta Mater. 47, 4041–4046 (1999).

    Article  CAS  Google Scholar 

  19. Jesson, D.E. & Pennycook, S.J. Incoherent imaging of thin specimens using coherently scattered electrons. Proc. R. Soc. Lond. A 441 261–281 (1993).

    Article  Google Scholar 

  20. Chang, H.K., Weidman, R.S. & Lee, J.K. An atomistic study of grain boundary segregation and cracking. Surf. Sci. 144, 224–252 (1984).

    Article  CAS  Google Scholar 

  21. Vitek, V., Ackland, G.J., Menyhard, M. & Yan, M. in Interfaces: Structure and Properties (ed. S. Ranganathan) 3–19 (Trans Tech, Aedemannsdorf, Switzerland, 1993).

    Google Scholar 

  22. Menyard, M., Yan, M. & Vitek, V. Atomistic vs. phenomenological approaches to grain boundary segregation: Computer modeling of Cu-Ag alloys. Acta Metall. 42, 2783–2796 (1994).

    Article  Google Scholar 

  23. Bruley, J., Keast, V.J. & Williams, D.B. Measurement of the localized electronic structure associated with bismuth segregation to copper grain boundaries. J. Phys. D 29, 1730–1739 (1996).

    Article  CAS  Google Scholar 

  24. Keast, V.J., Bruley, J., Rez P., MacLaren, J.M. & Williams, D.B. Chemistry and bonding changes associated with the segregation of Bi to grain boundaries in Cu. Acta Mater. 46, 481–490 (1998).

    Article  CAS  Google Scholar 

  25. Bruley, J., Keast, V.J. & Williams, D.B. An EELS study of segregation-induced grain boundary embrittlement of copper. Acta Mater. 47, 4009–4017 (1999).

    Article  CAS  Google Scholar 

  26. Ebert, H., Stohr, J., Parkin, S.S.P., Samant, M. & Nilsson, A. L-edge x-ray absorption in fcc and bcc Cu metal: Comparison of experimental and first-principles theoretical results. Phys. Rev. B 53, 16067–16073 (1996).

    Article  CAS  Google Scholar 

  27. Schweizer, S., Elsasser, C., Hummler, K. & Fahnle, M. Ab initio calculation of stacking-fault energies in noble metals. Phys. Rev. B 46, 14270–14273 (1992).

    Article  CAS  Google Scholar 

  28. Luitz, J. et al. Partial core hole screening in the Cu L3 edge. Eur. Phys. J. B 21, 363–367 (2001).

    Article  CAS  Google Scholar 

  29. Hebert, C., Luitz, J. & Schattschneider, P. Improvement of energy loss near edge structure calculation using Wein2k. Micron 34, 219–225 (2003).

    Article  CAS  Google Scholar 

  30. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Office of Basic Energy Sciences, US Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle and by the Deutsche Forschungsgemeinschaft under contract HO 708/15-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew F. Chisholm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duscher, G., Chisholm, M., Alber, U. et al. Bismuth-induced embrittlement of copper grain boundaries. Nature Mater 3, 621–626 (2004). https://doi.org/10.1038/nmat1191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing