Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Nanostructuring of metals by severe plastic deformation for advanced properties

Abstract

Despite rosy prospects, the use of nanostructured metals and alloys as advanced structural and functional materials has remained controversial until recently. Only in recent years has a breakthrough been outlined in this area, associated both with development of new routes for the fabrication of bulk nanostructured materials and with investigation of the fundamental mechanisms that lead to the new properties of these materials. Although a deep understanding of these mechanisms is still a topic of basic research, pilot commercial products for medicine and microdevices are coming within reach of the market. This progress article discusses new concepts and principles of using severe plastic deformation (SPD) to fabricate bulk nanostructured metals with advanced properties. Special emphasis is laid on the relationship between microstructural features and properties, as well as the first applications of SPD-produced nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of severe plastic deformation techniques.
Figure 2: TEM images of ultrafine-grained copper.
Figure 3: Typical images of microstructure of HPT-processed titanium.
Figure 4: Arrangement of grain boundaries in nanostructured titanium.
Figure 5: Strength and ductility of the nanostructured metals compared with coarse-grained metals.
Figure 6: Medical implants made of nanostructured titanium.

Similar content being viewed by others

References

  1. Gleiter, H. in Proc. 2nd Riso Int. Symp. Metallurgy and Materials Science (eds Hansen, N., Horswell, A., Leffers, T. & Lidholt, H.) 15–21 (Riso National Laboratory, Roskilde, Denmark, 1981).

    Google Scholar 

  2. Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 33, 223–330 (1989).

    Article  CAS  Google Scholar 

  3. Weertman, J.R. Mechanical properties of nanocrystalline materials. Mater. Sci. Eng. A 166, 161–171 (1993).

    Article  Google Scholar 

  4. Koch, C.C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Mater. 49, 657–662 (2003).

    Article  CAS  Google Scholar 

  5. Morris, D.G. Mechanical Behaviour of Nanostructured Materials (Trans Tech, Uetikon-Zürich, 1998).

    Google Scholar 

  6. Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T. & Lowe, T.C. Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5–8 (2002).

    Article  CAS  Google Scholar 

  7. Valiev, R. Nanomaterial advantage. Nature 419, 887–889 (2002).

    Article  CAS  Google Scholar 

  8. Wang, Y., Chen, M., Zhou, F. & Ma, E. High tensile ductility in a nanostructured metal. Nature 419, 912–915 (2002).

    Article  CAS  Google Scholar 

  9. Wang, Y.M. & Ma, E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699–1709 (2004).

    Article  CAS  Google Scholar 

  10. Valiev, R.Z., Islamgaliev, R.K. & Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103–189 (2000).

    Article  CAS  Google Scholar 

  11. Zhu, Y.T. et al. (eds) Ultrafine Grained Materials II (Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 2002); Ultrafine Grained Materials III (Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 2004).

    Book  Google Scholar 

  12. Zehetbauer, M. (ed.) Adv. Eng. Mater. 5 (special issue on nanomaterials by severe plastic deformation (SPD)) (2003).

  13. Valiev, R.Z., Korznikov, A.V. & Mulyukov, R.R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 186, 141–148 (1993).

    Article  Google Scholar 

  14. Valiev, R.Z., Krasilnikov, N.A. & Tsenev, N.K. Plastic deformation of alloys with submicro-grained structure. Mater. Sci. Eng. A 137, 35–40 (1991).

    Article  Google Scholar 

  15. Zhilyaev, A.P. et al. Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Mater. 44, 2753–2758 (2001).

    Article  CAS  Google Scholar 

  16. Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E. & Kopylov, V.I. Plastic working of metals by simple shear. Russian Metall. (Metally) 1, 99–105 (1981).

    Google Scholar 

  17. Langdon, T.G., Furukawa, M., Nemoto, M. & Horita, Z. Using equal-channel angular pressing for refining grain size. JOM 52, 30–33 (2000).

    Article  CAS  Google Scholar 

  18. Zhernakov, V.S. et al. A numerical modelling and investigations of flow stress and grain refinement during equal-channel angular pressing. Scripta Mater. 44, 1765–1769 (2001).

    Article  CAS  Google Scholar 

  19. Stolyarov, V.V. et al. Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A 299, 59–67 (2001).

    Article  Google Scholar 

  20. Zhilyaev, A.P. et al. Orientation imaging microscopy of ultrafine-grained nickel. Scripta Mater. 46, 575–580 (2002).

    Article  CAS  Google Scholar 

  21. Tóth, L.S. Texture evolution in severe plastic deformation by equal channel angular extrusion. Adv. Eng. Mater. 5, 308–316 (2003).

    Article  Google Scholar 

  22. Valiev, R.Z., Sergueeva, A.V. & Mukherjee, A.K. The effect of annealing on tensile deformation behaviour of nanostructured SPD titanium. Scripta Mater. 49, 669–674 (2003).

    Article  CAS  Google Scholar 

  23. Nazarov, A.A., Romanov, A.E. & Valiev, R.Z. On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall. Mater. 41, 1033–1040 (1993).

    Article  CAS  Google Scholar 

  24. Zhang, X. et al. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn. Acta Mater. 50, 4823–4830 (2002).

    Article  CAS  Google Scholar 

  25. Mughrabi, H., Höppel, H.W., Kautz, M. & Valiev, R.Z. Annealing treatments to enhance thermal and mechanical stablity of ultrafine-grained metals produced by severe plastic deformation. Z. Metallkunde 94, 1079–1083 (2003).

    Article  CAS  Google Scholar 

  26. Park, Y.S., Chung, K.H., Kim, N.J. & Lavernia, E.J. Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion. Mater. Sci. Eng. A 374, 211–216 (2004).

    Article  Google Scholar 

  27. Valiev, R.Z. et al. Deformation behaviour of ultra-fine-grained copper. Acta Metall. Mater. 42, 2467–2475 (1994).

    Article  CAS  Google Scholar 

  28. Nie, T.G., Wadsworth, J. & Sherby, O.D. Superplasticity in Metals and Ceramics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  29. Van Swygenhoven, H. Grain boundaries and dislocations. Science 296, 66–67 (2002).

    Article  CAS  Google Scholar 

  30. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. & Gleiter, H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature Mater. 1, 45–49 (2002).

    Article  CAS  Google Scholar 

  31. Schiøtz, J. & Jacobsen, K.W. A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003).

    Article  Google Scholar 

  32. Budrovic, Z., Van Swygenhoven, H., Derlet, P.M., Van Petegem, P. & Schmitt, B. Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304, 273–276 (2004).

    Article  CAS  Google Scholar 

  33. Van Swygenhoven, H., Derlet, P.M. & Frøseth, A.G. Stacking fault energies and slip in nanocrystalline metals. Nature Mater. 3, 399–403 (2004).

    Article  CAS  Google Scholar 

  34. Zelin, M.G. et al. On the microstructural aspects of the nonhomogeneity of superplastic deformation at the level of grain groups. Acta Metall. Mater. 42, 119–126 (1994).

    Article  CAS  Google Scholar 

  35. Hahn, H. & Padmanaban, K.A. A model for the deformation of nanocrystalline materials. Phil. Mag. B 76, 559 (1997).

    Article  CAS  Google Scholar 

  36. Chen, M. et al. Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003).

    Article  CAS  Google Scholar 

  37. Liao, X.Z. et al. Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83, 632–634 (2003).

    Article  CAS  Google Scholar 

  38. Kolobov, Yu. R. et al. Grain boundary diffusion characteristics of nanostructured nickel. Scripta Mater. 44, 873–878 (2001).

    Article  Google Scholar 

  39. Würschum, R., Herth, S. & Brossmann, U. Diffusion in nanocrystalline metals and alloys—a status report. Adv. Eng. Mater. 5, 365–372 (2003).

    Article  Google Scholar 

  40. McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P. & Mukherjee, A.K. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684–686 (1999).

    Article  CAS  Google Scholar 

  41. Höppel, H.W., Zhou, Z.M., Mughrabi, H. & Valiev, R.Z. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Phil. Mag. A 82, 1781–1794 (2002).

    Article  Google Scholar 

  42. Vinogradov, A. & Hashimoto, S. Fatigue of severe deformed metals. Adv. Eng. Mater. 5, 351–358 (2003).

    Article  CAS  Google Scholar 

  43. Pushin, V.G. et al. in Ultrafine Grained Materials III (eds Zhu, Y.T. et al.) 481–486 (Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 2004).

    Google Scholar 

  44. Lowe, T.C. & Zhu, Y.T. Commercialization of nanostructured metals produced by severe plastic deformation processing. Adv. Eng. Mater. 5, 373–378 (2003).

    Article  Google Scholar 

  45. Wang, Y., Ma, E., Valiev, R.Z. & Zhu, Y.T. Tough nanostructured metals at cryogenic temperatures. Adv. Mater. 16, 328–331 (2004).

    Article  CAS  Google Scholar 

  46. Gell, M. Applying nanostructured materials to future gas turbine engines. JOM 46, 30–34 (1994).

    Article  CAS  Google Scholar 

  47. Xu, C., Furukawa, M., Horita, Z. & Langdon, T.G. Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminium alloy. Acta Mater. 51, 6139–6149 (2003).

    Article  CAS  Google Scholar 

  48. Brunette, D.M., Tengvall, P., Textor, M. & Thomen, P. Titanium in Medicine (Springer, Berlin and Heidelberg, 2001).

    Book  Google Scholar 

  49. Zhu, Y.T. et al. Ultrafine-grained titanium for medical implants. US Patent 6,399,215 (2000).

Download references

Acknowledgements

This work was supported partly by the Department of Energy NIS-IPP program at Los-Alamos National Laboratory, the Alexander von Humboldt Foundation research award and the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiev, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Mater 3, 511–516 (2004). https://doi.org/10.1038/nmat1180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing