Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy

Abstract

A key issue in research on ferrofluids (dispersions of magnetic colloids) is the effect of dipolar interactions on their structure and phase behaviour1,2, which is not only important for practical applications3 but gives fundamental insight in dipolar fluids in general. In 1970, de Gennes and Pincus4 predicted a Van der Waals-like phase diagram and the presence of linear chains of particles in ferrofluids in zero magnetic field. Despite many experimental studies5,6,7, no direct evidence of the existence of linear chains of dipoles has been reported in the absence of magnetic field, although simulations8,9,10,11 clearly show the presence of chain-like structures. Here, we show in situ linear dipolar structures in ferrofluids in zero field, visualized on the particle level by electron cryo-microscopy on thin, vitrified films of organic dispersions of monodisperse metallic iron particles. On systematically increasing the particle size, we find an abrupt transition from separate particles to randomly oriented linear aggregates and branched chains or networks. When vitrified in a permanent magnetic field, these chains align and form thick elongated structures, indicating lateral attraction between parallel dipole chains. These findings show that the experimental model used is well suited to study the structural properties of dipolar particle systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical cryo-TEM images of iron dispersions with increasing average particle radius, labelled according to Table 1.
Figure 2: Cryo-TEM images of a mixture of dispersions D and A (with iron volume fractions of particles of 0.0006 and 0.0004, respectively).

Similar content being viewed by others

References

  1. Teixeira, P.I.C., Tavares, J.M. & Telo da Gama, M.M. The effect of dipolar forces on the structure and thermodynamics of classical fluids. J. Phys. Condens. Matter 12, R411–R434 (2000).

    Article  CAS  Google Scholar 

  2. Tlusty, T. & Safran, S.A. Defect-induced phase separation in dipolar fluids. Science 290, 1328–1331 (2000).

    Article  CAS  Google Scholar 

  3. Berkovski, B. & Bashtovoy, V. (eds) Magnetic Fluids and Applications Handbook (Begel House, New York, 1996).

    Google Scholar 

  4. de Gennes, P.G. & Pincus, P.A. Pair correlations in a ferromagnetic colloid. Phys. Kondens. Mater. 11, 189–198 (1970).

    CAS  Google Scholar 

  5. Shen, L., Stachowiak, A., Fateen, S.K., Laibinis, P.E. & Hatton, T.A. Structure of alkanoic acid stabilized magnetic fluids. A small-angle neutron and light scattering analysis. Langmuir 17, 288–299 (2001).

    Article  CAS  Google Scholar 

  6. Donselaar, L.N. et al. Visualisation of particle association in magnetic fluids in zero-field. J. Magn. Magn. Mater. 201, 58–61 (1999).

    Article  CAS  Google Scholar 

  7. Cebula, D.J., Charles, S.W. & Popplewell, J. Aggregation in ferrofluids studied by neutron small angle scattering. J. Physique 44, 207–213 (1983).

    Article  CAS  Google Scholar 

  8. Weis, J.J. Orientational structure of quasi-two-dimensional dipolar hard spheres. Mol. Phys. 93, 361–364 (1998).

    Article  CAS  Google Scholar 

  9. Tavares, J.M., Weis, J.J. & Telo da Gama, M.M. Strongly dipolar fluids at low densities compared to living polymers. Phys. Rev. E. 59, 4388–4395 (1999).

    Article  CAS  Google Scholar 

  10. Chantrell, R.W., Bradbury, A., Popplewell, J. & Charles, S.W. Agglomerate formation in a magnetic fluid. J. Appl. Phys. 53, 2742–2744 (1982).

    Article  CAS  Google Scholar 

  11. Tavares, J.M., Weis, J.J. & Telo da Gama, M.M. Quasi-two-dimensional dipolar fluid at low densities: Monte Carlo simulations and theory. Phys. Rev. E. 65, 061201 (2002).

  12. Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1275 (1981).

    Article  Google Scholar 

  13. Rosensweig, R.E. Ferrohydrodynamics (Cambridge Univ. Press, Cambridge, 1985).

    Google Scholar 

  14. Griffiths, C.H., O'Horo, M.P. & Smith, T.W. The structure, magnetic characterization, and oxidation of colloidal iron dispersions. J. Appl. Phys. 50, 7108–7115 (1979).

    Article  CAS  Google Scholar 

  15. Talmon, Y. Transmission electron microscopy of complex fluids: The state of the art. Ber. Bunsenges. Phys. Chem. 100, 364–372 (1996).

    Article  CAS  Google Scholar 

  16. Frederik, P.M., Stuart, M.C.A., Schrijvers, A.H.G.J. & Bomans, P.H.H. Thin film formation and the imaging of phospholipids by cryo-electron microscopy. Scanning Microscopy 3, 277–284 (1989).

    Google Scholar 

  17. Oostergetel, G.T., Esselink, F.J. & Hadziioannou, G. Cryo-electron microscopy of block copolymers in an organic solvent. Langmuir 11, 3721–3724 (1995).

    Article  CAS  Google Scholar 

  18. Pathmamanoharan, C., Zuiverloon, N.L. & Philipse, A.P. Controlled (seeded) growth of monodisperse sterically stabilised magnetic iron colloids. Progr. Colloid Polym. Sci. 115, 141–145 (2000).

    Article  CAS  Google Scholar 

  19. Goossens, A. et al. Monodisperse magnetic iron colloids grafted with polyisobutene: a model system for Fischer-Tropsch catalysts? Hyperfine Interact. 141/142, 381–386 (2002).

    Article  CAS  Google Scholar 

  20. Scholten, P.C. in Magnetic Properties of Fine Particles (eds. Dormann, J.L. & Fiorani, D.) 277–286 (Elsevier, Amsterdam, The Netherlands, 1992).

    Book  Google Scholar 

  21. Reimer, L. Transmission Electron Microscopy: Physics of Image Formation and Microanalysis 2nd edn Vol. 36 (Springer, Heidelberg 1989).

    Book  Google Scholar 

  22. Fannin, P.C., Scaife, B.K.P. & Charles, S.W. New technique for measuring the complex susceptibility of ferrofluids. J. Phys. E. 19, 238–239 (1986).

    Article  CAS  Google Scholar 

  23. Fermigier, M. & Gast, A.P. Structure evolution in a paramagnetic latex suspension. J. Magn. Magn. Mater. 122, 46–50 (1993).

    Article  CAS  Google Scholar 

  24. Gast, A.P. & Zukoski, C.F. Electrorheological fluids as colloidal suspensions. Adv. Colloid Interface Sci. 30, 153–202 (1989).

    Article  CAS  Google Scholar 

  25. Skjeltorp, A.T. One- and two-dimensional crystallization of magnetic holes. Phys. Rev. Lett. 51, 2306–2309 (1983).

    Article  CAS  Google Scholar 

  26. Halsey, T.C. Electrorheological fluids. Science 258, 761–766 (1992).

    Article  CAS  Google Scholar 

  27. Osipov, M.A., Teixeira, P.I.C. & Telo da Gama, M.M. Structure of strongly dipolar fluids at low densities. Phys. Rev. E. 54, 2597–2609 (1996).

    Article  CAS  Google Scholar 

  28. van Ewijk, G.A., Vroege, G.J. & Kuipers, B.W.M. Phase behavior of magnetic colloid-polymer mixtures: 2. A magnetic sensing coil study. Langmuir 18, 382–390 (2002).

    Article  CAS  Google Scholar 

  29. Frederik, P.M., Bomans, P.H.H., Laeven, P.F.J. & Nijpels, F.J.T. Device for Preparing Specimens for a Cryo-electron Microscope (Netherlands Industrial Property Office (RO/NL) PCT/NL02/00189 2002).

    Google Scholar 

  30. Oldenbourg, H. & Philips, W.C. Small permanent magnet for fields up to 2.6 T. Rev. Sci. Instrum. 57, 2362–2365 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

Marc Storms and Felix de Haas from FEI Electron Optics, Eindhoven, The Netherlands, are thanked for performing the EELS-measurements. Ben Erné and Thido Arts are thanked for their help with the susceptibility measurements. Financial support was granted by the Dutch Technology Foundation (STW) with financial aid from the Council for Chemical Science of the Netherlands Organization for Scientific Research (CW/NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.P. Philipse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butter, K., Bomans, P., Frederik, P. et al. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nature Mater 2, 88–91 (2003). https://doi.org/10.1038/nmat811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing