Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mixed-dimensional van der Waals heterostructures

Abstract

The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. Given that any passivated, dangling-bond-free surface will interact with another through vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through non-covalent interactions. We present a succinct and critical survey of emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices. By comparing and contrasting with all-2D vdW heterostructures as well as with competing conventional technologies, we highlight the challenges and opportunities for mixed-dimensional vdW heterostructures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrations of prototypical 2D materials and mixed-dimensional van der Waals (vdW) heterojunctions.
Figure 2: Schematic examples of 0D, 1D and 3D semiconductor materials.
Figure 3: Organic–2D heterostructures.
Figure 4: Gate-tunable heterojunction devices.
Figure 5: Tunnelling transport in mixed-dimensional vdW heterostructures.
Figure 6: Photodetectors based on mixed-dimensional vdW heterostructures.
Figure 7: Photovoltaics based on mixed-dimensional vdW heterostructures.
Figure 8: Light-emitting heterostructure devices.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    CAS  Google Scholar 

  3. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    CAS  Google Scholar 

  4. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    CAS  Google Scholar 

  5. Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotech. 8, 100–103 (2013).

    CAS  Google Scholar 

  6. Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nature Nanotech. 9, 808–813 (2014).

    CAS  Google Scholar 

  7. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nature Mater. 12, 246–252 (2012).

    Google Scholar 

  8. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

    CAS  Google Scholar 

  9. Grigorieva, I. V. & Geim, A. K. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  10. Das, S., Robinson, J. A., Dubey, M., Terrones, H. & Terrones, M. Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45, 1–27 (2015).

    CAS  Google Scholar 

  11. Wang, H., Yuan, H., Sae Hong, S., Li, Y. & Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2015).

    CAS  Google Scholar 

  12. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

    Google Scholar 

  13. Hoppe, H. & Sariciftci, N. S. Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2004).

    CAS  Google Scholar 

  14. Gong, M. et al. Polychiral semiconducting carbon nanotube–fullerene solar cells. Nano Lett. 14, 5308–5314 (2014).

    CAS  Google Scholar 

  15. Neto, A. C., Guinea, F., Peres, N., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Google Scholar 

  16. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    CAS  Google Scholar 

  17. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Google Scholar 

  18. Facchetti, A. Semiconductors for organic transistors. Mater. Today 10, 28–37 (2007).

    CAS  Google Scholar 

  19. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Google Scholar 

  20. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    CAS  Google Scholar 

  21. Lieber, C. M. & Wang, Z. L. Functional nanowires. MRS Bull. 32, 99–108 (2007).

    CAS  Google Scholar 

  22. Yu, X., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nature Mater. 15, 383–396 (2016).

    CAS  Google Scholar 

  23. Li, S.-L., Tsukagoshi, K., Orgiu, E. & Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45, 118–151 (2016).

    CAS  Google Scholar 

  24. Kang, J., Liu, W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4, 031005 (2014).

    Google Scholar 

  25. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nature Mater. 14, 1195–1205 (2015).

    CAS  Google Scholar 

  26. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley, 2007).

    Google Scholar 

  27. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    CAS  Google Scholar 

  28. So, F. Organic Electronics: Materials, Processing, Devices and Applications (CRC, 2009).

    Google Scholar 

  29. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 42, 2824–2860 (2013).

    CAS  Google Scholar 

  30. Wang, Q. H. & Hersam, M. C. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nature Chem. 1, 206–211 (2009).

    CAS  Google Scholar 

  31. Kufer, D. et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27, 176–180 (2015).

    CAS  Google Scholar 

  32. Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    CAS  Google Scholar 

  33. Jariwala, D. et al. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. Nano Lett. 15, 416–421 (2015).

    CAS  Google Scholar 

  34. Jariwala, D. et al. Gate-tunable carbon nanotube–MoS2 heterojunction p–n diode. Proc. Natl Acad. Sci. USA 110, 18076–18080 (2013).

    CAS  Google Scholar 

  35. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    CAS  Google Scholar 

  36. Ruzmetov, D. et al. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 10, 3580–3588 (2016).

    CAS  Google Scholar 

  37. Chung, K., Lee, C.-H. & Yi, G.-C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330, 655–657 (2010).

    CAS  Google Scholar 

  38. Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012).

    CAS  Google Scholar 

  39. Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nature Chem. 6, 779–784 (2014).

    CAS  Google Scholar 

  40. Pfeffermann, M. et al. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 137, 14525–14532 (2015).

    CAS  Google Scholar 

  41. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nature Chem. 6, 774–778 (2014).

    CAS  Google Scholar 

  42. Zhuang, X. et al. Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Adv. Mater. 27, 3789–3796 (2015).

    CAS  Google Scholar 

  43. Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).

    CAS  Google Scholar 

  44. Tour, J. M. Molecular electronics. synthesis and testing of components. Acc. Chem. Res. 33, 791–804 (2000).

    CAS  Google Scholar 

  45. Lee C.-H. et al. Epitaxial growth of molecular crystals on van der Waals substrates for high-performance organic electronics. Adv. Mater. 26, 2812–2817 (2014).

    CAS  Google Scholar 

  46. Kang, S. J. et al. Organic field effect transistors based on graphene and hexagonal boron nitride heterostructures. Adv. Funct. Mater. 24, 5157–5163 (2014).

    CAS  Google Scholar 

  47. Lee, G.-H. et al. Heterostructures based on inorganic and organic van der Waals systems. APL Mater. 2, 092511 (2014).

    Google Scholar 

  48. Jo, S. B. et al. Boosting photon harvesting in organic solar cells with highly oriented molecular crystals via graphene–organic heterointerface. ACS Nano 9, 8206–8219 (2015).

    CAS  Google Scholar 

  49. Lee, W. H. et al. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors. J. Am. Chem. Soc. 133, 4447–4454 (2011).

    CAS  Google Scholar 

  50. Lee, S. et al. Enhanced characteristics of pentacene field-effect transistors with graphene electrodes and substrate treatments. Appl. Phys. Lett. 99, 083306 (2011).

    Google Scholar 

  51. Lee, S. et al. Enhanced charge injection in pentacene field-effect transistors with graphene electrodes. Adv. Mater. 23, 100–105 (2011).

    CAS  Google Scholar 

  52. Basu, S., Lee, M. C. & Wang, Y.-H. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene. Phys. Chem. Chem. Phys. 16, 16701–16710 (2014).

    CAS  Google Scholar 

  53. Di, C.-A. et al. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 20, 3289–3293 (2008).

    CAS  Google Scholar 

  54. Wang, Y. et al. Graphene-assisted solution growth of vertically oriented organic semiconducting single crystals. ACS Nano 9, 9486–9496 (2015).

    CAS  Google Scholar 

  55. Colson, J. W. et al. Oriented 2D. Science, 332, 228–231 (2011).

    CAS  Google Scholar 

  56. Huafeng, Y. et al. Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics. 2D Mater. 1, 011012 (2014).

    Google Scholar 

  57. Schlierf, A. et al. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale 5, 4205–4216 (2013).

    CAS  Google Scholar 

  58. Sarbani, B., Feri, A. & Yeong-Her, W. Blending effect of 6,13-bis(triisopropylsilylethynyl) pentacene–graphene composite layers for flexible thin film transistors with a polymer gate dielectric. Nanotechnology 25, 085201 (2014).

    Google Scholar 

  59. Zhang, Y. et al. Two-dimensional MoS2-assisted immediate aggregation of poly-3-hexylthiophene with high mobility. Phys. Chem. Chem. Phys. 17, 27565–27572 (2015).

    CAS  Google Scholar 

  60. He, D. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nature Commun. 5, 5162 (2014).

    CAS  Google Scholar 

  61. Parui, S. et al. Gate-controlled energy barrier at a graphene/molecular semiconductor junction. Adv. Funct. Mater. 25, 2972–2979 (2015).

    CAS  Google Scholar 

  62. Liu, Y., Zhou, H., Weiss, N. O., Huang, Y. & Duan, X. High-performance organic vertical thin film transistor using graphene as a tunable contact. ACS Nano 9, 11102–11108 (2015).

    CAS  Google Scholar 

  63. Hlaing, H. et al. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures. Nano Lett. 15, 69–74 (2015).

    CAS  Google Scholar 

  64. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    CAS  Google Scholar 

  65. Liu, Y. et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 14, 1413–1418 (2014).

    CAS  Google Scholar 

  66. Heo, J. et al. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics. Nano Lett. 13, 5967–5971 (2013).

    CAS  Google Scholar 

  67. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012).

    CAS  Google Scholar 

  68. Ojeda-Aristizabal, C., Bao, W. & Fuhrer, M. S. Thin-film barristor: a gate-tunable vertical graphene–pentacene device. Phys. Rev. B 88, 035435 (2013).

    Google Scholar 

  69. Jariwala, D. et al. Hybrid, gate-tunable, van der Waals p–n heterojunctions from pentacene and MoS2 . Nano Lett. 16, 497–503 (2016).

    CAS  Google Scholar 

  70. Velez, S. et al. Gate-tunable diode and photovoltaic effect in an organic–2D layered material p–n junction. Nanoscale 7, 15442–15449 (2015).

    CAS  Google Scholar 

  71. Jeong, H. et al. Semiconductor–insulator–semiconductor diode consisting of monolayer MoS2, h-BN, and GaN heterostructure. ACS Nano 9, 10032–10038 (2015).

    CAS  Google Scholar 

  72. Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    CAS  Google Scholar 

  73. Vaziri, S. et al. Going ballistic: graphene hot electron transistors. Solid State Commun. 224, 64–75 (2015).

    CAS  Google Scholar 

  74. Mehr, W. et al. Vertical graphene base transistor. IEEE Electron Device Lett. 33, 691–693 (2012).

    CAS  Google Scholar 

  75. Vaziri, S. et al. A graphene-based hot electron transistor. Nano Lett. 13, 1435–1439 (2013).

    CAS  Google Scholar 

  76. Torres, C. M. et al. High-current gain two-dimensional MoS2-base hot-electron transistors. Nano Lett. 15, 7905–7912 (2015).

    CAS  Google Scholar 

  77. Vaziri, S. et al. Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors. Nanoscale 7, 13096–13104 (2015).

    CAS  Google Scholar 

  78. Mead, C. A. Operation of tunnel-emission devices. J. Appl. Phys. 32, 646–652 (1961).

    Google Scholar 

  79. van 't Erve, O. M. J. et al. Low-resistance spin injection into silicon using graphene tunnel barriers. Nature Nanotech. 7, 737–742 (2012).

    CAS  Google Scholar 

  80. van 't Erve O. M. J. et al. Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers. Nature Commun. 6, 7541 (2015).

    CAS  Google Scholar 

  81. Koppens F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).

    CAS  Google Scholar 

  82. Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012).

    CAS  Google Scholar 

  83. Jang, S., Hwang, E., Lee, Y., Lee, S. & Cho, J. H. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett. 15, 2542–2547 (2015).

    CAS  Google Scholar 

  84. Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech. 8, 826–830 (2013).

    CAS  Google Scholar 

  85. Yu, S. H. et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 8, 8285–8291 (2014).

    CAS  Google Scholar 

  86. Cho, E. et al. Enhancement of photoresponsive electrical characteristics of multilayer MoS2 transistors using rubrene patches. Nano Res. 8, 790–800 (2015).

    CAS  Google Scholar 

  87. An, X., Liu, F., Jung, Y. J. & Kar, S. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13, 909–916 (2013).

    CAS  Google Scholar 

  88. Zeng, L.-H. et al. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).

    CAS  Google Scholar 

  89. Chen, C.-C., Aykol, M., Chang, C.-C., Levi, A. F. J. & Cronin, S. B. Graphene–silicon Schottky diodes. Nano Lett. 11, 1863–1867 (2011).

    CAS  Google Scholar 

  90. Zhu, M. et al. Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale 6, 4909–4914 (2014).

    CAS  Google Scholar 

  91. An, Y., Behnam, A., Pop, E. & Ural, A. Metal–semiconductor–metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 102, 013110 (2013).

    Google Scholar 

  92. Nie, B. et al. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 9, 2872–2879 (2013).

    CAS  Google Scholar 

  93. Gao, Z. et al. Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale 5, 5576–5581 (2013).

    CAS  Google Scholar 

  94. Shin, D. H. et al. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect. Adv. Mater. 27, 2614–2620 (2015).

    CAS  Google Scholar 

  95. Miao, J. et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11, 936–942 (2015).

    CAS  Google Scholar 

  96. Esmaeili-Rad, M. R. & Salahuddin, S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 3, 2345 (2013).

    Google Scholar 

  97. Liu, F. et al. Van der Waals p–n junction based on an organic–inorganic heterostructure. Adv. Funct. Mater. 25, 5865–5871 (2015).

    CAS  Google Scholar 

  98. Koester, S. J. & Li, M. Waveguide-coupled graphene optoelectronics. IEEE J. Sel. Top. Quant. Electron. 20, 84–94 (2014).

    Google Scholar 

  99. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    CAS  Google Scholar 

  100. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Google Scholar 

  101. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

    CAS  Google Scholar 

  102. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013).

    CAS  Google Scholar 

  103. Shiue, R.-J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    CAS  Google Scholar 

  104. Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photon. 7, 888–891 (2013).

    CAS  Google Scholar 

  105. Li, X. et al. Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 2743–2748 (2010).

    CAS  Google Scholar 

  106. Brus, V. V. et al. Stability of graphene–silicon heterostructure solar cells. Phys. Status Solidi A 211, 843–847 (2014).

    CAS  Google Scholar 

  107. Shi, E. et al. Colloidal antireflection coating improves graphene–silicon solar cells. Nano Lett. 13, 1776–1781 (2013).

    CAS  Google Scholar 

  108. Miao, X. et al. High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012).

    CAS  Google Scholar 

  109. Lin, Y. et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energ. Environ. Sci. 6, 108–115 (2013).

    CAS  Google Scholar 

  110. Zhang, X. et al. High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J. Mater. Chem. A, 1, 6593–6601 (2013).

    CAS  Google Scholar 

  111. Feng, T. et al. Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl. Phys. Lett. 99, 233505 (2011).

    Google Scholar 

  112. Xie, C. et al. Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett. 99, 133113 (2011).

    Google Scholar 

  113. Song, Y. et al. Role of interfacial oxide in high-efficiency graphene–silicon Schottky barrier solar cells. Nano Lett. 15, 2104–2110 (2015).

    CAS  Google Scholar 

  114. Li, X. et al. 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy, 16, 310–319 (2015).

    CAS  Google Scholar 

  115. Vazquez-Mena, O. et al. Performance enhancement of a graphene–zinc phosphide solar cell using the electric field-effect. Nano Lett. 14, 4280–4285 (2014).

    CAS  Google Scholar 

  116. Zhang, L. et al. Graphene–CdSe nanobelt solar cells with tunable configurations. Nano Res. 4, 891–900 (2011).

    CAS  Google Scholar 

  117. Ye, Y. et al. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Nanoscale 3, 1477–1481 (2011).

    CAS  Google Scholar 

  118. Lin, S. et al. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping. Appl. Phys. Lett. 107, 191106 (2015).

    Google Scholar 

  119. Ye, Y. & Dai, L. Graphene-based Schottky junction solar cells. J. Mater. Chem. 22, 24224–24229 (2012).

    CAS  Google Scholar 

  120. Lopez-Sanchez, O. et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042–3048 (2014).

    CAS  Google Scholar 

  121. Tsai, M.-L. et al. Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014).

    CAS  Google Scholar 

  122. Lin, S. et al. Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. Sci. Rep. 5, 15103 (2015).

    CAS  Google Scholar 

  123. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photon. 9, 30–34 (2015).

    CAS  Google Scholar 

  124. Tan, Y. et al. Polarization-dependent optical absorption of MoS2 for refractive index sensing. Sci. Rep. 4, 7523 (2014).

    CAS  Google Scholar 

  125. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  126. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    CAS  Google Scholar 

  127. Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

    CAS  Google Scholar 

  128. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature Mater. 14, 301–306 (2015).

    CAS  Google Scholar 

  129. Ye, Y. et al. Exciton-dominant electroluminescence from a diode of monolayer MoS2 . Appl. Phys. Lett. 104, 193508 (2014).

    Google Scholar 

  130. Li, D. et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nature Commun. 6, 7509 (2015).

    Google Scholar 

  131. Lee, C.-H. et al. Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv. Mater. 23, 4614–4619 (2011).

    CAS  Google Scholar 

  132. Ye, Y. et al. Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. J. Mater. Chem. 21, 11760–11763 (2011).

    CAS  Google Scholar 

  133. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photon. 6, 105–110 (2012).

    CAS  Google Scholar 

  134. Han, N. et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nature Commun. 4, 1452 (2013).

    Google Scholar 

  135. Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2 . Science 350, 1065–1068 (2015).

    CAS  Google Scholar 

  136. Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  Google Scholar 

  137. Callahan, D. M., Munday, J. N. & Atwater, H. A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012).

    CAS  Google Scholar 

  138. Ye, Y. et al. Monolayer excitonic laser. Nature Photon. 9, 733–737 (2015).

    CAS  Google Scholar 

  139. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    CAS  Google Scholar 

  140. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Materials Research Science and Engineering Center (MRSEC) of Northwestern University (NSF DMR-1121262), and the 2-DARE programme (NSF EFRI-143510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jariwala, D., Marks, T. & Hersam, M. Mixed-dimensional van der Waals heterostructures. Nature Mater 16, 170–181 (2017). https://doi.org/10.1038/nmat4703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing