Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials for solar fuels and chemicals

Abstract

The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams comparing PV/electrolysis and PEC devices for production of solar fuels, showing products for electrochemical water splitting.

PONG CHAKTHRANONT

Figure 2: STH efficiency contour plots as a function of bandgaps and electrocatalytic overpotentials for the top and bottom absorbers of a dual (stacked) absorber PEC water splitting device.
Figure 3: Losses from experimentally measured electrocatalytic overpotentials for HER and OER.
Figure 4: Standard 'volcano' analysis of ηtheor for HER and OER using adsorption free energy descriptors from DFT calculations72,77.
Figure 5: Catalyst design strategies for tuning adsorption energies towards higher electrocatalytic activity.
Figure 6: A catalyst overlayer on a semiconductor surface can improve catalysis, passivate surface states, tune the band energetics and protect the surface from corrosion.

Similar content being viewed by others

References

  1. Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013).

    Article  CAS  Google Scholar 

  2. Chen, Z. et al. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010).

    Google Scholar 

  3. Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    CAS  Google Scholar 

  4. Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

    CAS  Google Scholar 

  5. Khaselev, O. & Turner, J. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    CAS  Google Scholar 

  6. Licht, S. et al. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920–8924 (2000).

    CAS  Google Scholar 

  7. Bonke, S. A., Wiechen, M., MacFarlane, D. R. & Spiccia, L. Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ. Sci. 8, 2791–2796 (2015).

    CAS  Google Scholar 

  8. Fujii, K. et al. Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int. J. Hydrogen Energy 38, 14424–14432 (2013).

    CAS  Google Scholar 

  9. Akihiro, N. et al. A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl. Phys. Express 8, 107101 (2015).

    Google Scholar 

  10. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    CAS  Google Scholar 

  11. Chen, Z., Dinh, H. N. & Miller, E. Photoelectrochemical Water Splitting (Springer, 2013).

    Google Scholar 

  12. Schreier, M. et al. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat. Commun. 6, 7326 (2015).

    CAS  Google Scholar 

  13. Arai, T., Sato, S. & Morikawa, T. A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor. Energy Environ. Sci. 8, 1998–2002 (2015).

    CAS  Google Scholar 

  14. Schreier, M. et al. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J. Am. Chem. Soc. 138, 1938–1946 (2016).

    CAS  Google Scholar 

  15. Benedetti, J. E., Bernardo, D. R., Morais, A., Bettini, J. & Nogueira, A. F. Synthesis and characterization of a quaternary nanocomposite based on TiO2/CdS/rGO/Pt and its application in the photoreduction of CO2 to methane under visible light. RSC Adv. 5, 33914–33922 (2015).

    CAS  Google Scholar 

  16. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Google Scholar 

  17. Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).

    CAS  Google Scholar 

  18. Weber, M. F. & Dignam, M. J. Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 131, 1258–1265 (1984).

    CAS  Google Scholar 

  19. Weber, M. & Dignam, M. Splitting water with semiconducting photoelectrodes—efficiency considerations. Int. J. Hydrogen Energy 11, 225–232 (1986).

    CAS  Google Scholar 

  20. Rocheleau, R. E. & Miller, E. L. Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22, 771–782 (1997).

    CAS  Google Scholar 

  21. Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985).

    CAS  Google Scholar 

  22. Haussener, S. et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5, 9922–9935 (2012).

    CAS  Google Scholar 

  23. Haussener, S., Hu, S., Xiang, C., Weber, A. Z. & Lewis, N. S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 3605–3618 (2013).

    CAS  Google Scholar 

  24. Hu, S., Xiang, C., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013).

    CAS  Google Scholar 

  25. Seitz, L. C. et al. Modeling Practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 7, 1372–1385 (2014).

    CAS  Google Scholar 

  26. Döscher, H. et al. Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7, 2951–2956 (2014).

    Google Scholar 

  27. Ross, R. T. & Hsiao, T.-L. Limits on the yield of photochemical solar energy conversion. J. Appl. Phys. 48, 4783–4785 (1977).

    Google Scholar 

  28. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Google Scholar 

  29. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    CAS  Google Scholar 

  30. Schuldiner, S. Hydrogen overvoltage on bright platinum. J. Electrochem. Soc. 99, 488–494 (1952).

    CAS  Google Scholar 

  31. Kibsgaard, J. & Jaramillo, T. F. Molybdenum phosphosulfide: an active, acid-stable, Earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 14433–14437 (2014).

    CAS  Google Scholar 

  32. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P. & Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014).

    CAS  Google Scholar 

  33. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).

    CAS  Google Scholar 

  34. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    CAS  Google Scholar 

  35. Trotochaud, L., Ranney, J. K., Williams, K. N. & Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012).

    CAS  Google Scholar 

  36. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  Google Scholar 

  37. Stoerzinger, K. A., Qiao, L., Biegalski, M. D. & Shao-Horn, Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2 . J. Phys. Chem. Lett. 5, 1636–1641 (2014).

    CAS  Google Scholar 

  38. Ng, J. W. D. et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053 (2016).

    CAS  Google Scholar 

  39. Hellstern, T. R., Benck, J. D., Kibsgaard, J., Hahn, C. & Jaramillo, T. F. Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 6, 1501758 (2016).

    Google Scholar 

  40. Singh, M. R., Clark, E. L. & Bell, A. T. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels. Proc. Natl Acad. Sci. USA 112, E6111–E6118 (2015).

    CAS  Google Scholar 

  41. James, B. D., Baum, G. N., Perez, J. & Baum, K. N. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production Final Report (US Department of Energy, 2009).

    Google Scholar 

  42. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    CAS  Google Scholar 

  43. Sathre, R. et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7, 3264–3278 (2014).

    CAS  Google Scholar 

  44. Sathre, R. et al. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energy Environ. Sci. 9, 803–819 (2016).

    CAS  Google Scholar 

  45. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    CAS  Google Scholar 

  46. Sugiyama, M., Nakamura, S. & Fujii, K. (eds) Solar to Chemical Energy Conversion: Theory and Application (Lecture Notes in Energy Vol. 32, Springer, 2016).

    Google Scholar 

  47. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    CAS  Google Scholar 

  48. Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H. & Sayama, K. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 9, 574–581 (2007).

    CAS  Google Scholar 

  49. Berglund, S. P., Lee, H. C., Nunez, P. D., Bard, A. J. & Mullins, C. B. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Phys. Chem. Chem. Phys. 15, 4554–4565 (2013).

    CAS  Google Scholar 

  50. Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  51. Landis, D. D. et al. The Computational Materials Repository. Comput. Sci. Eng. 14, 51–57 (2012).

    Google Scholar 

  52. Gritsenko, O., van Leeuwen, R., van Lenthe, E. & Baerends, E. J. Self-consistent approximation to the Kohn–Sham exchange potential. Phys. Rev. A 51, 1944–1954 (1995).

    CAS  Google Scholar 

  53. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS  Google Scholar 

  54. Chan, M. K. Y. & Ceder, G. Efficient band gap prediction for solids. Phys. Rev. Lett. 105, 196403 (2010).

    CAS  Google Scholar 

  55. Kuisma, M., Ojanen, J., Enkovaara, J. & Rantala, T. T. Kohn–Sham potential with discontinuity for band gap materials. Phys. Rev. B 82, 115106 (2010).

    Google Scholar 

  56. Castelli, I. E. et al. New light-harvesting materials using accurate and efficient bandgap calculations. Adv. Energy Mater. 5, 1400915 (2015).

    Google Scholar 

  57. Castelli, I. E. et al. Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 5, 5814–5819 (2012).

    CAS  Google Scholar 

  58. Wu, Y., Lazic, P., Hautier, G., Persson, K. & Ceder, G. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci. 6, 157–168 (2013).

    CAS  Google Scholar 

  59. Castelli, I. E. et al. New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ. Sci. 5, 9034–9043 (2012).

    CAS  Google Scholar 

  60. Yan, Q. et al. Mn2V2O7: an Earth abundant light absorber for solar water splitting. Adv. Energy Mater. 5, 1401840 (2015).

    Google Scholar 

  61. Castelli, I. E., García-Lastra, J. M., Thygesen, K. S. & Jacobsen, K. W. Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2, 081514 (2014).

    Google Scholar 

  62. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    CAS  Google Scholar 

  63. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  Google Scholar 

  64. Kibsgaard, J. et al. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 8, 3022–3029 (2015).

    CAS  Google Scholar 

  65. Navarro-Flores, E., Chong, Z. & Omanovic, S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A Chem. 226, 179–197 (2005).

    CAS  Google Scholar 

  66. Krstajic, N. et al. Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int. J. Hydrogen Energy 33, 3676–3687 (2008).

    CAS  Google Scholar 

  67. Fan, C. Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J. Electrochem. Soc. 141, 382–387 (1994).

    CAS  Google Scholar 

  68. Li, D. J. et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 14, 1228–1233 (2014).

    CAS  Google Scholar 

  69. McCrory, C. C. L. et al. Benchmarking HER and OER electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  Google Scholar 

  70. Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    CAS  Google Scholar 

  71. Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).

    CAS  Google Scholar 

  72. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    CAS  Google Scholar 

  73. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    CAS  Google Scholar 

  74. Bonde, J., Moses, P. G., Jaramillo, T. F., Nørskov, J. K. & Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2009).

    Google Scholar 

  75. Canaguier, S. et al. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies. Chemistry 15, 9350–9364 (2009).

    CAS  Google Scholar 

  76. Zheng, Y. et al. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014).

    Google Scholar 

  77. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Google Scholar 

  78. Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotech. 10, 444–452 (2015).

    CAS  Google Scholar 

  79. Viswanathan, V., Pickrahn, K. L., Luntz, A. C., Bent, S. F. & Nørskov, J. K. Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution. Nano Lett. 14, 5853–5857 (2014).

    CAS  Google Scholar 

  80. Halck, N. B., Petrykin, V., Krtil, P. & Rossmeisl, J. Beyond the volcano limitations in electrocatalysis–oxygen evolution reaction. Phys. Chem. Chem. Phys. 16, 13682–13688 (2014).

    CAS  Google Scholar 

  81. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Google Scholar 

  82. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Google Scholar 

  83. Chan, K., Tsai, C., Hansen, H. A. & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6, 1899–1905 (2014).

    CAS  Google Scholar 

  84. Hansen, H. A., Shi, C., Lausche, A. C., Peterson, A. A. & Nørskov, J. K. Bifunctional alloys for the electroreduction of CO2 and CO. Phys. Chem. Chem. Phys. 18, 9194–9201 (2016).

    CAS  Google Scholar 

  85. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  86. Skulason, E. et al. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 9, 3241–3250 (2007).

    CAS  Google Scholar 

  87. Rossmeisl, J., Skúlason, E., Björketun, M. E., Tripkovic, V. & Nørskov, J. K. Modeling the electrified solid–liquid interface. Chem. Phys. Lett. 466, 68–71 (2008).

    CAS  Google Scholar 

  88. Shi, C., O'Grady, C. P., Peterson, A. A., Hansen, H. A. & Nørskov, J. K. Modeling CO2 reduction on Pt(111). Phys. Chem. Chem. Phys. 15, 7114–7122 (2013).

    CAS  Google Scholar 

  89. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    CAS  Google Scholar 

  90. Tsai, C. et al. Direct water decomposition on transition metal surfaces: structural dependence and catalytic screening. Catal. Lett. 146, 718–724 (2016).

    CAS  Google Scholar 

  91. Hinnemann, B. & Nørskov, J. K. Chemical activity of the nitrogenase FeMo cofactor with a central nitrogen ligand: density functional study. J. Am. Chem. Soc. 126, 3920–3927 (2004).

    CAS  Google Scholar 

  92. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Google Scholar 

  93. Chen, Z. et al. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011).

    CAS  Google Scholar 

  94. Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J. & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012).

    CAS  Google Scholar 

  95. Jaramillo, T. F. et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008).

    CAS  Google Scholar 

  96. Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    CAS  Google Scholar 

  97. Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).

    CAS  Google Scholar 

  98. Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012).

    CAS  Google Scholar 

  99. Xiao, P. et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7, 2624–2629 (2014).

    CAS  Google Scholar 

  100. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    CAS  Google Scholar 

  101. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Google Scholar 

  102. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E.) 89–189 (Springer, 2008).

    Google Scholar 

  103. Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    CAS  Google Scholar 

  104. Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    CAS  Google Scholar 

  105. Vojvodic, A. & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl Sci. Rev. 2, 140–149 (2015).

    CAS  Google Scholar 

  106. Doyle, A. D., Montoya, J. H. & Vojvodic, A. Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7, 738–742 (2015).

    CAS  Google Scholar 

  107. Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    CAS  Google Scholar 

  108. Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012).

    Google Scholar 

  109. Sun, L., Ramesha, G. K., Kamat, P. V & Brennecke, J. F. Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30, 6302–6308 (2014).

    CAS  Google Scholar 

  110. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    CAS  Google Scholar 

  111. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Google Scholar 

  112. Feng, X., Jiang, K., Fan, S. & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).

    CAS  Google Scholar 

  113. Norskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    CAS  Google Scholar 

  114. Michalsky, R., Zhang, Y.-J., Medford, A. J. & Peterson, A. A. Departures from the adsorption energy scaling relations for metal carbide catalysts. J. Phys. Chem. C 118, 13026–13034 (2014).

    CAS  Google Scholar 

  115. Zhang, B. et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    CAS  Google Scholar 

  116. Tripkovic, V. et al. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187–9195 (2013).

    CAS  Google Scholar 

  117. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    CAS  Google Scholar 

  118. Montoya, J. H., Garcia-Mota, M., Nørskov, J. K. & Vojvodic, A. Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting. Phys. Chem. Chem. Phys. 17, 2634–2640 (2014).

    Google Scholar 

  119. Nielander, A. C., Shaner, M. R., Papadantonakis, K. M., Francis, S. A. & Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 8, 16–25 (2015).

    CAS  Google Scholar 

  120. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  Google Scholar 

  121. Guijarro, N., Prevot, M. S. & Sivula, K. Surface modification of semiconductor photoelectrodes. Phys. Chem. Chem. Phys. 17, 15655–15674 (2015).

    CAS  Google Scholar 

  122. Nellist, M. R., Laskowski, F. A. L., Lin, F., Mills, T. J. & Boettcher, S. W. Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 49, 733–740 (2016).

    CAS  Google Scholar 

  123. Seger, B. et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. Int. Ed. 51, 9128–9131 (2012).

    CAS  Google Scholar 

  124. Benck, J. D. et al. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater. 4, 1400739 (2014).

    Google Scholar 

  125. McKone, J. R. et al. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573–3583 (2011).

    CAS  Google Scholar 

  126. Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2 clusters. Nat. Chem. 6, 248–253 (2014).

    CAS  Google Scholar 

  127. Peter, L. M. & Upul Wijayantha, K. G. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem 15, 1983–1995 (2014).

    CAS  Google Scholar 

  128. Sivula, K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 4, 1624–1633 (2013).

    CAS  Google Scholar 

  129. Bard, A. J., Fan, F.-R. F., Gioda, A. S., Nagasubramanian, G. & White, H. S. On the role of surface states in semiconductor electrode photoelectrochemical cells. Faraday Discuss. Chem. Soc. 70, 19–31 (1980).

    Google Scholar 

  130. Hamann, T. W. Splitting water with rust: hematite photoelectrochemistry. Dalt. Trans. 41, 7830–7834 (2012).

    CAS  Google Scholar 

  131. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T. & Bisquert, J. Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012).

    CAS  Google Scholar 

  132. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with 'Co–Pi'-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693–16700 (2012).

    CAS  Google Scholar 

  133. Braun, A. et al. Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. J. Phys. Chem. C 116, 16870–16875 (2012).

    CAS  Google Scholar 

  134. Hisatomi, T. et al. Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ. Sci. 4, 2512–2515 (2011).

    CAS  Google Scholar 

  135. Barroso, M. et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640–15645 (2012).

    CAS  Google Scholar 

  136. Gamelin, D. R. Water splitting: catalyst or spectator? Nat. Chem. 4, 965–967 (2012).

    CAS  Google Scholar 

  137. Seabold, J. A. & Choi, K.-S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134, 2186–2192 (2012).

    CAS  Google Scholar 

  138. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    CAS  Google Scholar 

  139. Lin, F. & Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81–86 (2014).

    CAS  Google Scholar 

  140. Zhou, X. et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 8, 2644–2649 (2015).

    CAS  Google Scholar 

  141. Hikita, Y. et al. Band edge engineering of oxide photoanodes for photoelectrochemical water splitting: integration of subsurface dipoles with atomic-scale control. Adv. Energy Mater. 6, 1502154 (2016).

    Google Scholar 

  142. Hu, Y.-S., Kleiman-Shwarsctein, A., Stucky, G. D. & McFarland, E. W. Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride. Chem. Commun. 2009, 2652–2654 (2009).

    Google Scholar 

  143. Hunger, R. et al. Chemical and electronic characterization of methyl-terminated Si(111) surfaces by high-resolution synchrotron photoelectron spectroscopy. Phys. Rev. B 72, 045317 (2005).

    Google Scholar 

  144. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011).

    CAS  Google Scholar 

  145. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon, 1966).

    Google Scholar 

  146. Mei, B. et al. Crystalline TiO2: a generic and effective electron-conducting protection layer for photoanodes and -cathodes. J. Phys. Chem. C 119, 15019–15027 (2015).

    CAS  Google Scholar 

  147. Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proc. Natl Acad. Sci. USA 112, 3612–3617 (2015).

    CAS  Google Scholar 

  148. Mei, B. et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. J. Phys. Chem. Lett. 5, 3456–3461 (2014).

    CAS  Google Scholar 

  149. Shaner, M. R., Hu, S., Sun, K. & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2 . Energy Environ. Sci. 8, 203–207 (2015).

    CAS  Google Scholar 

  150. Ping, Y., Goddard, W. A. & Galli, G. A. Energetics and solvation effects at the photoanode/catalyst interface: ohmic contact versus Schottky barrier. J. Am. Chem. Soc. 137, 5264–5267 (2015).

    CAS  Google Scholar 

  151. Matsubu, J. C. et al. Critical role of interfacial effects on the reactivity of semiconductor–cocatalyst junctions for photocatalytic oxygen evolution from water. Catal. Sci. Technol. 6, 6836–6844 (2016).

    CAS  Google Scholar 

  152. Walczak, K. et al. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. ChemSusChem 8, 544–551 (2015).

    CAS  Google Scholar 

  153. Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 126, 5531–5534 (2014).

    Google Scholar 

Download references

Acknowledgements

The OER, ORR and HER work was supported by the US DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences and Bio Sciences Division through the SUNCAT Center for Interface Science. The work on CO2 reduction was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US DOE under Award Number DE-SC0004993. Helpful discussions and insights from Jakob Kibsgaard and Thomas Hellstern are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens K. Nørskov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoya, J., Seitz, L., Chakthranont, P. et al. Materials for solar fuels and chemicals. Nature Mater 16, 70–81 (2017). https://doi.org/10.1038/nmat4778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing