Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films

Abstract

Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr1−xTixO3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structures in PbZr1−xTixO3 heterostructures.
Figure 2: Cross-sectional transmission electron microscopy studies of compositionally graded heterostructures.
Figure 3: Understanding switching in PbZr0.2Ti0.8O3 heterostructures.
Figure 4: Understanding switching in compositionally graded heterostructures.
Figure 5: Breaking down the differences between homogeneous and compositionally graded heterostructures.

Similar content being viewed by others

References

  1. Roitburd, A. L. Equilibrium structure of epitaxial layers. Phys. Status Solidi 37, 329–339 (1976).

    Article  Google Scholar 

  2. Foster, C. M., Pompe, W., Daykin, A. C. & Speck, J. S. Relative coherency strain and phase transformation history in epitaxial ferroelectric thin films. J. Appl. Phys. 79, 1405–1415 (1996).

    Article  CAS  Google Scholar 

  3. Kwak, B. S. et al. Strain relaxation by domain formation in epitaxial ferroelectric thin films. Phys. Rev. Lett. 68, 3733–3736 (1992).

    Article  CAS  Google Scholar 

  4. Setter, N. et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

    Article  Google Scholar 

  5. Li, D. & Bonnell, D. A. Controlled patterning of ferroelectric domains: fundamental concepts and applications. Annu. Rev. Mater. Res. 38, 351–368 (2008).

    Article  CAS  Google Scholar 

  6. Karthik, J., Agar, J. C., Damodaran, A. R. & Martin, L. W. Effect of 90° domain walls and thermal expansion mismatch on the pyroelectric properties of epitaxial PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 109, 257602 (2012).

    Article  CAS  Google Scholar 

  7. Feigl, L. et al. Controlled stripes of ultrafine ferroelectric domains. Nature Commun. 5, 4677 (2014).

    Article  CAS  Google Scholar 

  8. Chen, L. et al. Formation of 90° elastic domains during local 180° switching in epitaxial ferroelectric thin films. Appl. Phys. Lett. 84, 254–256 (2004).

    Article  CAS  Google Scholar 

  9. Mangalam, R. V. K., Karthik, J., Damodaran, A. R., Agar, J. C. & Martin, L. W. Unexpected crystal and domain structures and properties in compositionally graded PbZr1−xTixO3 thin films. Adv. Mater. 25, 1761–1767 (2013).

    Article  CAS  Google Scholar 

  10. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  11. Karthik, J., Damodaran, A. R. & Martin, L. W. Effect of 90° domain walls on the low-field permittivity of PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 108, 167601 (2012).

    Article  CAS  Google Scholar 

  12. Zednik, R. J., Varatharajan, A., Oliver, M., Valanoor, N. & McIntyre, P. C. Mobile ferroelastic domain walls in nanocrystalline PZT films: the direct piezoelectric effect. Adv. Funct. Mater. 21, 3104–3110 (2011).

    Article  CAS  Google Scholar 

  13. Karthik, J. & Martin, L. W. Pyroelectric properties of polydomain epitaxial Pb(Zr1−x, tTix)O3 thin films. Phys. Rev. B 84, 024102 (2011).

    Article  Google Scholar 

  14. Seidel, J. Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3, 2905–2909 (2012).

    Article  CAS  Google Scholar 

  15. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  CAS  Google Scholar 

  16. Farokhipoor, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).

    Article  CAS  Google Scholar 

  17. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

    Article  CAS  Google Scholar 

  18. Salje, E. & Zhang, H. Domain boundary engineering. Phase Transit. 82, 452–469 (2009).

    Article  CAS  Google Scholar 

  19. Vasudevan, R. et al. Domain wall geometry controls conduction in ferroelectrics. Nano Lett. 12, 5524–5531 (2012).

    Article  CAS  Google Scholar 

  20. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    Article  CAS  Google Scholar 

  21. Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2012).

    Article  CAS  Google Scholar 

  22. Xu, R., Karthik, J., Damodaran, A. R. & Martin, L. W. Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nature Commun. 5, 3120 (2014).

    Article  Google Scholar 

  23. McGilly, L. J., Yudin, P., Feigl, L., Tagantsev, A. K. & Setter, N. Controlling domain wall motion in ferroelectric thin films. Nature Nanotech. 10, 145–150 (2015).

    Article  CAS  Google Scholar 

  24. Su, D. et al. Origin of 90° domain wall pinning in Pb(Zr0.2Ti0.8)O3 heteroepitaxial thin films. Appl. Phys. Lett. 99, 102902 (2011).

    Article  Google Scholar 

  25. Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nature Mater. 2, 43–47 (2003).

    Article  CAS  Google Scholar 

  26. Roelofs, A. et al. Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains. Appl. Phys. Lett. 80, 1424–1426 (2002).

    Article  CAS  Google Scholar 

  27. Khan, A. I., Marti, X., Serrao, C., Ramesh, R. & Salahuddin, S. Voltage-controlled ferroelastic switching in Pb(Zr0.2Ti0.8)O3 thin films. Nano Lett. 15, 2229–2234 (2015).

    Article  CAS  Google Scholar 

  28. Feigl, L., McGilly, L., Sandu, C. & Setter, N. Compliant ferroelastic domains in epitaxial Pb(Zr, Ti)O3 thin films. Appl. Phys. Lett. 104, 172904 (2014).

    Article  Google Scholar 

  29. Wessels, B. W. Ferroelectric epitaxial thin films for integrated optics. Annu. Rev. Mater. Res. 37, 659–679 (2007).

    Article  CAS  Google Scholar 

  30. Scrymgeour, D. Ferroelectric Crystals for Photonic Applications 385–399 (Springer, 2014).

    Book  Google Scholar 

  31. Scott, J. F. Ferroelectric Memories (Springer Science Business Media, 2000).

    Book  Google Scholar 

  32. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    Article  CAS  Google Scholar 

  33. Agar, J. C. et al. Complex evolution of built-in potential in compositionally-graded PbZr1−xTixO3 thin films. ACS Nano 9, 7332–7342 (2015).

    Article  CAS  Google Scholar 

  34. Mangalam, R. V. K., Agar, J. C., Damodaran, A. R., Karthik, J. & Martin, L. W. Improved pyroelectric figures of merit in compositionally graded PbZr1−xTixO3 thin films. ACS Appl. Mater. Interfaces 5, 13235–13241 (2013).

    Article  CAS  Google Scholar 

  35. Jesse, S. & Kalinin, S. V. Band excitation in scanning probe microscopy: sines of change. J. Phys. D 44, 464006 (2011).

    Article  Google Scholar 

  36. Speck, J. S., Seifert, A., Pompe, W. & Ramesh, R. Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications. J. Appl. Phys. 76, 477–483 (1994).

    Article  CAS  Google Scholar 

  37. Ganpule, C. S. et al. Role of 90° domains in lead zirconate titanate thin films. Appl. Phys. Lett. 77, 292–294 (2000).

    Article  CAS  Google Scholar 

  38. Lee, K., Choi, J., Lee, J. & Baik, S. Domain formation in epitaxial Pb(Zr, Ti)O3 thin films. J. Appl. Phys. 90, 4095–4102 (2001).

    Article  CAS  Google Scholar 

  39. Gao, P. et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nature Commun. 4, 2791 (2013).

    Article  Google Scholar 

  40. Britson, J., Nelson, C., Pan, X. & Chen, L. First-order morphological transition of ferroelastic domains in ferroelectric thin films. Acta Mater. 75, 188–197 (2014).

    Article  CAS  Google Scholar 

  41. Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nature Mater. 10, 963–967 (2011).

    Article  CAS  Google Scholar 

  42. Gao, P. et al. Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nature Commun. 5, 3801 (2014).

    Article  CAS  Google Scholar 

  43. Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610–1615 (2012).

    Article  CAS  Google Scholar 

  44. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).

    Article  CAS  Google Scholar 

  45. Tagantsev, A. K. & Yurkov, A. S. Flexoelectric effect in finite samples. J. Appl. Phys. 112, 044103 (2012).

    Article  Google Scholar 

  46. Cross, L. E. Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006).

    Article  CAS  Google Scholar 

  47. Yudin, P. & Tagantsev, A. Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013).

    Article  CAS  Google Scholar 

  48. Ozdol, V. B. et al. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl. Phys. Lett. 106, 253107 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

J.C.A., G.A.V. and L.W.M. acknowledge support from the National Science Foundation under grant DMR-1451219. A.R.D. and S.P. acknowledge support from the Army Research Office under grant W911NF-14-1-0104. L.R.D. acknowledges support from the Department of Energy, Basic Energy Sciences under grant No. DE-SC0012375 for chemical studies of the materials. R.V.K.M. acknowledges support from the National Science Foundation under grant CMMI-1434147. R.K.V. and S.V.K. acknowledge support from the Division of Materials Sciences and Engineering, Basic Energy Sciences, Department of Energy. Portions of this research were conducted at the Center for Nanophase Materials Sciences, which is a Department of Energy, Office of Science User Facility sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Basic Energy Sciences, Department of Energy which also provided support for M.B.O., S.J. and N.B. J.K. and A.M.M. acknowledge support from the National Science Foundation CMMI/MoM Program under GOALI Grant 1235610. C.G. acknowledges support from the Austrian Science Fund (FWF):[J3397]. Portions of this work were carried out at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the US Dept. of Energy under Contract No. DE-AC02-29705CH11231.

Author information

Authors and Affiliations

Authors

Contributions

J.C.A. and L.W.M. designed the experiments. J.C.A., R.V.K.M. and G.A.V. grew the films and conducted the macroscopic electrical and structural characterization. L.R.D. completed the Rutherford backscattering spectrometry studies. J.K., C.G. and A.M.M. prepared the samples for STEM and conducted the STEM imaging and nanobeam diffraction strain mapping. J.C.A., J.K., C.G., A.M.M. and L.W.M. analysed the STEM and nanobeam diffraction strain mapping data. M.B.O., S.J., N.B. and S.V.K. designed the custom band-excitation system. J.C.A., M.B.O. and R.K.V. conducted the band-excitation measurements. M.B.O., S.J., R.K.V. and S.V.K. designed the band-excitation fitting and piezoelectric loop fitting algorithm and software. J.C.A., M.B.O., R.K.V., S.J., N.B., S.V.K. and L.W.M. analysed the band-excitation results. J.C.A., A.R.D., S.P. and L.W.M. determined the switching mechanism. J.C.A. and L.W.M. co-wrote the paper.

Corresponding author

Correspondence to L. W. Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1979 kb)

Supplementary Information

Supplementary movie 1 (MOV 23066 kb)

Supplementary Information

Supplementary movie 2 (MOV 27954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agar, J., Damodaran, A., Okatan, M. et al. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nature Mater 15, 549–556 (2016). https://doi.org/10.1038/nmat4567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing