Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced superconductivity in surface-electron-doped iron pnictide Ba(Fe1.94Co0.06)2As2

This article has been updated

Abstract

The superconducting transition temperature (TC) in a FeSe monolayer on SrTiO3 is enhanced up to 100 K (refs 1,2,3,4). High TC is also found in bulk iron chalcogenides with similar electronic structure5,6,7 to that of monolayer FeSe, which suggests that higher TC may be achieved through electron doping, pushing the Fermi surface (FS) topology towards leaving only electron pockets. Such an observation, however, has been limited to chalcogenides, and is in contrast to the iron pnictides, for which the maximum TC is achieved with both hole and electron pockets forming considerable FS nesting instability8,9,10,11. Here, we report angle-resolved photoemission characterization revealing a monotonic increase of TC from 24 to 41.5 K upon surface doping on optimally doped Ba(Fe1−xCox)2As2. The doping changes the overall FS topology towards that of chalcogenides through a rigid downward band shift. Our findings suggest that higher electron doping and concomitant changes in FS topology are favourable conditions for the superconductivity, not only for iron chalcogenides, but also for iron pnictides.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic structures of pristine (OP) and surface-electron-doped (OPD) optimal Ba(Fe1−xCox)2As2.
Figure 2: Surface doping and temperature dependence of the superconducting gap.
Figure 3: Summary of TC enhancement and FS topology change upon surface doping.

Similar content being viewed by others

Change history

  • 29 September 2016

    In the original version of this Letter, the x-axes in Fig. 2a-d were mislabelled; they should have read 'EEF (meV)'. This has been corrected in all versions.

References

  1. Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  Google Scholar 

  2. He, S. L. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013).

    Article  CAS  Google Scholar 

  3. Tan, S. Y. et al. Interface-induced superconductivity and strain-dependent spin density wave in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634–640 (2013).

    Article  CAS  Google Scholar 

  4. Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nat. Mater. 14, 285–289 (2015).

    Article  CAS  Google Scholar 

  5. Zhang, Y. et al. Nodeless superconducting gap in AxFe2Se2 (A = K, Cs) revealed by angle-resolved photoemission spectroscopy. Nat. Mater. 10, 273–277 (2011).

    Article  CAS  Google Scholar 

  6. Chang, C. C. et al. Superconductivity in Fe-chalcogenides. Physica C 514, 423–434 (2015).

    Article  CAS  Google Scholar 

  7. Niu, X. H. et al. Surface electronic structure and isotropic superconducting gap in (Li0.8Fe0.2)OHFeSe. Phys. Rev. B 92, 060504(R) (2015).

    Article  Google Scholar 

  8. Ding, H. et al. Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 . Europhys. Lett. 83, 47001 (2008).

    Article  Google Scholar 

  9. Terashima, K. et al. Fermi surface nesting induced strong pairing in iron-based superconductors. Proc. Natl Acad. Sci. USA 106, 7330–7333 (2009).

    Article  CAS  Google Scholar 

  10. Hajiri, T. et al. Three-dimensional electronic structure and interband nesting in the stoichiometric superconductor LiFeAs. Phys. Rev. B 85, 094509 (2012).

    Article  Google Scholar 

  11. Sen, S. & Ghosh, H. Fermiology of 122 family of Fe-based superconductors: an ab initio study. Phys. Lett. A 379, 843–847 (2015).

    Article  CAS  Google Scholar 

  12. Kamihara, Y. et al. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05, 0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  13. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  CAS  Google Scholar 

  14. Miyata, Y., Nakayama, K., Sugawara, K., Sata, T. & Takahashi, T. High-temperature superconductivity in potassium-coated multilayer FeSe thin films. Nat. Mater. 14, 775–779 (2015).

    Article  CAS  Google Scholar 

  15. Tan, S. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634–640 (2013).

    Article  CAS  Google Scholar 

  16. Seo, J. J. et al. Superconductivity below 20 K in heavily electon-doped surface layer of FeSe bulk crystal. Nat. Commun. 7, 11116 (2016).

    Article  CAS  Google Scholar 

  17. Ye, Z. R. et al. Simultaneous emergence of superconductivity, inter-pocket scattering and nematic fluctuation in potassium-coated FeSe superconductor. Preprint at http://arXiv.org/abs/1512.02526 (2015).

  18. Lee, C.-H. et al. Effect of structural parameters on superconductivity in fluorine-free LnFeAsO1−y (Ln = La, Nd). J. Phys. Soc. Jpn 77, 083704 (2008).

    Article  Google Scholar 

  19. Zhang, C. et al. Effect of pnictogen height on spin waves in iron pnictide. Phys. Rev. Lett. 112, 217202 (2014).

    Article  Google Scholar 

  20. Drotziger, S. et al. Pressure versus concentration tuning of the superconductivity in Ba(Fe1−xCox)2As2 . J. Phys. Soc. Jpn 79, 124705 (2010).

    Article  Google Scholar 

  21. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  CAS  Google Scholar 

  22. Hossain, M. et al. In situ doping control of the surface of high-temperature superconductors. Nat. Phys. 4, 527–531 (2008).

    Article  CAS  Google Scholar 

  23. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nat. Nanotech. 9, 111–115 (2014).

    Article  CAS  Google Scholar 

  24. Nakajima, M. et al. Evolution of the optical spectrum with doping in Ba(Fe1−xCox)2As2 . Phys. Rev. B 81, 104528 (2010).

    Article  Google Scholar 

  25. Kim, Y. K. et al. Electronic structure of detwinned BaFe2As2 from photoemission and first principles. Phys. Rev. B 83, 063509 (2011).

    Google Scholar 

  26. Usui, H. & Kuroki, K. Maximizing the Fermi-surface multiplicity optimizes the superconducting state of iron pnictide compounds. Phys. Rev. B 84, 024505 (2011).

    Article  Google Scholar 

  27. Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  CAS  Google Scholar 

  28. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    Article  CAS  Google Scholar 

  29. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093 (1998).

    Article  CAS  Google Scholar 

  30. Thaler, A. et al. Physical and magnetic properties of Ba(Fe1−xRux)2As2 single crystals. Phys. Rev. B 82, 014534 (2010).

    Article  Google Scholar 

  31. Rotter, M., Langerl, M., Tegel, M. & Johrendt, D. Superconductivity and crystal structures of (Ba1−xKx)Fe2As2 (x = 0 − 1). Angew. Chem. Int. Ed. 47, 7949–7952 (2008).

    Article  CAS  Google Scholar 

  32. Onari, S. & Kontani, H. Violation of Anderson’s theorem for the sign-reversing s-wave state of iron-pnictide superconductors. Phys. Rev. Lett. 103, 177001 (2009).

    Article  Google Scholar 

  33. Shen, D. W. et al. Novel mechanism of a charge density wave in a transition metal dichalcogenide. Phys. Rev. Lett. 114, 167001 (2015).

    Article  Google Scholar 

  34. Paglione, J. & Greene, R. High temperature superconductivity in iron-based materials. Nat. Phys. 6, 645–658 (2010).

    Article  CAS  Google Scholar 

  35. Chen, X., Maiti, S., Linscheid, A. & Hirschfeld, P. J. Electron pairing in the presence of incipient bands in iron-based superconductors. Phys. Rev. B 92, 224514 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by IBS-R009-G2, IBS-R009-G1 and the Basic Science Research Program (No. 2012-008233) funded by Korean Federation of Science and Technology Societies. This research is also supported by the Strategic International Collaborative Research Program (SICORP) from Japan Science and Technology Agency. The Advanced Light Source is supported by the Office of Basic Energy Sciences of the US DOE under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

Y.K.K. conceived the work. W.S.K. and Y.K.K. performed ARPES measurements with the support from J.D.D. and S.-K.M., and analysed the data. Samples were grown and characterized by K.-Y.C., M.N. and H.E. All authors discussed the results. Y.K.K., S.-K.M. and C.K. led the project and manuscript preparation, with contributions from all authors.

Corresponding authors

Correspondence to S.-K. Mo, C. Kim or Y. K. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyung, W., Huh, S., Koh, Y. et al. Enhanced superconductivity in surface-electron-doped iron pnictide Ba(Fe1.94Co0.06)2As2. Nature Mater 15, 1233–1236 (2016). https://doi.org/10.1038/nmat4728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing