Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts

Abstract

Compositional heterogeneity in shaped, bimetallic nanocrystals offers additional variables to manoeuvre the functionality of the nanocrystal. However, understanding how to manipulate anisotropic elemental distributions in a nanocrystal is a great challenge in reaching higher tiers of nanocatalyst design. Here, we present the evolutionary trajectory of phase segregation in Pt–Ni rhombic dodecahedra. The anisotropic growth of a Pt-rich phase along the 〈111〉 and 〈200〉 directions at the initial growth stage results in Pt segregation to the 14 axes of a rhombic dodecahedron, forming a highly branched, Pt-rich tetradecapod structure embedded in a Ni-rich shell. With longer growth time, the Pt-rich phase selectively migrates outwards through the 14 axes to the 24 edges such that the rhombic dodecahedron becomes a Pt-rich frame enclosing a Ni-rich interior phase. The revealed anisotropic phase segregation and migration mechanism offers a radically different approach to fabrication of nanocatalysts with desired compositional distributions and performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation process of the rhombic dodecahedra.
Figure 2: Development of rhombic dodecahedra and corrosion to three-dimensional nanostructures.
Figure 3: STEM–EDS analysis of segregation and migration of Pt in Pt–Ni rhombic dodecahedra.
Figure 4: Structural evolution over time in Pt–Ni rhombic dodecahedra.
Figure 5: Summary of the complete growth process of a Pt–Ni rhombic dodecahedron.

Similar content being viewed by others

References

  1. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  2. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  Google Scholar 

  3. Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    Article  CAS  Google Scholar 

  4. Narayanan, R. & El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4, 1343–1348 (2004).

    Article  CAS  Google Scholar 

  5. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  6. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  7. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater. 6, 241–247 (2007).

    Article  CAS  Google Scholar 

  8. Wang, C. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 133, 14396–14403 (2011).

    Article  CAS  Google Scholar 

  9. Zhang, J., Yang, H., Fang, J. & Zou, S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010).

    Article  CAS  Google Scholar 

  10. Wu, J. et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010).

    Article  CAS  Google Scholar 

  11. Cui, C. H. et al. Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885–5889 (2012).

    Article  CAS  Google Scholar 

  12. Cui, C. H., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Mater. 12, 765–771 (2013).

    Article  CAS  Google Scholar 

  13. Choi, S.-I. et al. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013).

    Article  CAS  Google Scholar 

  14. Huang, X. et al. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  CAS  Google Scholar 

  15. Gasteiger, H. A. & Markovic, N. M. Just a dream–or future reality? Science 324, 48–49 (2009).

    Article  CAS  Google Scholar 

  16. Gauthier, Y., Joly, Y., Baudoing, R. & Rundgren, J. Surface-sandwich segregation on nondilute bimetallic alloys: Pt50Ni50 and Pt78Ni22 probed by low-energy electron diffraction. Phys. Rev. B 31, 6216–6218 (1985).

    Article  CAS  Google Scholar 

  17. Gan, L. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 346, 1502–1506 (2014).

    Article  CAS  Google Scholar 

  18. Oh, A. et al. Skeletal octahedral nanoframe with cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core–shell nanocrystal. ACS Nano 9, 2856–2867 (2015).

    Article  CAS  Google Scholar 

  19. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  Google Scholar 

  20. Becknell, N. et al. Atomic structure of Pt3Ni nanoframe electrocatalysts by in situ X-ray absorption spectroscopy. J. Am. Chem. Soc. 137, 15817–15824 (2015).

    Article  CAS  Google Scholar 

  21. Becknell, N., Zheng, C., Chen, C., Yu, Y. & Yang, P. Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes. Surf. Sci. 648, 328–332 (2015).

    Article  Google Scholar 

  22. Watt, J., Young, N., Haigh, S., Kirkland, A. & Tilley, R. D. Synthesis and structural characterization of branched palladium nanostructures. Adv. Mater. 21, 2288–2293 (2009).

    Article  CAS  Google Scholar 

  23. Wu, Y. et al. Defect-dominated shape recovery of nanocrystals: a new strategy for trimetallic catalysts. J. Am. Chem. Soc. 135, 12220–12223 (2013).

    Article  CAS  Google Scholar 

  24. Zeng, J. et al. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew. Chem. Int. Ed. 51, 2354–2358 (2012).

    Article  CAS  Google Scholar 

  25. Williams, D. B. & Carter, C. B. The Transmission Electron Microscope (Springer, 1996).

    Book  Google Scholar 

  26. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  27. Zabinsky, S., Rehr, J., Ankudinov, A., Albers, R. & Eller, M. FEFF code for ab initio calculations of XAFS. Phys. Rev. B 52, 2995–3009 (1995).

    Article  CAS  Google Scholar 

  28. Hwang, B.-J. et al. Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J. Am. Chem. Soc. 127, 11140–11145 (2005).

    Article  CAS  Google Scholar 

  29. Wang, G., Van Hove, M. A., Ross, P. N. & Baskes, M. I. Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo). Prog. Surf. Sci. 79, 28–45 (2005).

    CAS  Google Scholar 

  30. Wang, G., Van Hove, M. A., Ross, P. N. & Baskes, M. Monte Carlo simulations of segregation in Pt–Ni catalyst nanoparticles. J. Chem. Phys. 122, 024706 (2005).

    Article  Google Scholar 

  31. Ahmadi, M., Behafarid, F., Cui, C. H., Strasser, P. & Cuenya, B. R. Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. ACS Nano 7, 9195–9204 (2013).

    Article  CAS  Google Scholar 

  32. Dahmani, C. E., Cadeville, M. C., Sanchez, J. M. & Morán-López, J. L. Ni-Pt phase diagram: experiment and theory. Phys. Rev. Lett. 55, 1208–1211 (1985).

    Article  CAS  Google Scholar 

  33. Nash, P. & Singleton, M. The Ni-Pt (nickel-platinum) system. J. Phase Equilib. 10, 258–262 (1989).

    CAS  Google Scholar 

  34. Seo, O. et al. Chemical ordering in PtNi nanocrystals. J. Alloys Compd. 666, 232–236 (2016).

    Article  CAS  Google Scholar 

  35. Vitos, L., Ruban, A., Skriver, H. L. & Kollar, J. The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    Article  CAS  Google Scholar 

  36. Cui, C. H. et al. Shape-selected bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. Faraday Discuss. 162, 91–112 (2013).

    Article  CAS  Google Scholar 

  37. Shao, M., Peles, A. & Shoemaker, K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011).

    Article  CAS  Google Scholar 

  38. Xia, Y., Xia, X. & Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    Article  CAS  Google Scholar 

  39. Zeng, J. et al. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 132, 8552–8553 (2010).

    Article  CAS  Google Scholar 

  40. Niu, Z. & Li, Y. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 26, 72–83 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The research conducted at Lawrence Berkeley National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231 (surface). Z.N. gratefully acknowledges support from the International Postdoctoral Exchange Fellowship Program 2014. D.K. acknowledges support from Samsung Scholarship. All HRTEM, HAADF-STEM, and EDS mapping made use of the National Center for Electron Microscopy at the Molecular Foundry. XPS data was collected at the Molecular Foundry. We acknowledge M. Marcus and the use of Beamline 10.3.2 at the Advanced Light Source for collection of EXAFS data. The Molecular Foundry and the Advanced Light Source are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge P. Alivisatos for access to the Bruker D-8 XRD and E. Kreimer of the Microanalytical Facility in the College of Chemistry, UC Berkeley for access to ICP analysis.

Author information

Authors and Affiliations

Authors

Contributions

Z.N., N.B. and P.Y. designed the experiments and wrote the paper. Z.N. and N.B. performed the experiments and contributed equally to the work. Y.Y. and N.K. performed HRTEM and HAADF-STEM analysis. D.K. and Z.N. completed XPS analysis. C.C. initiated the work. G.A.S. and P.Y. guided the work. All authors commented on the manuscript.

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Becknell, N., Yu, Y. et al. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nature Mater 15, 1188–1194 (2016). https://doi.org/10.1038/nmat4724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing