Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Physics and applications of exciton–polariton lasers

Although exciton–polariton lasers have been experimentally demonstrated in a variety of material systems, robust practical implementations are still challenging. Similarities with atomic Bose–Einstein condensates make the system suitable for chip-based quantum simulators for non-trivial many-body physics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exciton–polariton laser based on a semiconductor planar microcavity.
Figure 2: Berezinskii–Kosterlitz–Thouless transition in an exciton–polariton gas.
Figure 3: Approach to excitation and braiding anyons in an exciton–polariton FQH state.

References

  1. Anderson, M. H. et al. Science 269, 198–201 (1995).

    Article  CAS  Google Scholar 

  2. Davis, K. B. et al. Phys. Rev. Lett. 75, 3969 (1995).

    Article  CAS  Google Scholar 

  3. Imamoglu, A. et al. Phys. Rev. A 53, 4250 (1996).

    Article  CAS  Google Scholar 

  4. Deng, H. et al. Proc. Natl Acad. Sci. USA 100, 15318 (2003).

    Article  CAS  Google Scholar 

  5. Kasprzak, J. et al. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  6. Christopoulos, S. et al. Phys. Rev. Lett. 98, 126405 (2007).

    Article  CAS  Google Scholar 

  7. Butté, R. et al. Phys. Rev. B 80, 233301 (2009).

    Article  CAS  Google Scholar 

  8. Kéna-Cohen, S. & Forrest, S. R. Nat. Photon. 4, 371–375 (2010).

    Article  CAS  Google Scholar 

  9. Kavokin, A. et al. MRS Int. J. Nitride Semicond. Res. 8, e3 (2003).

  10. Roumpos, G. et al. Proc. Natl Acad. Sci. USA 109, 6467–6472 (2012).

    Article  CAS  Google Scholar 

  11. Nitsche, W. H. et al. Phys. Rev. B 90, 205430 (2014).

    Article  CAS  Google Scholar 

  12. Szymańska, M. H. et al. Phys. Rev. B 75, 195331 (2007).

    Article  CAS  Google Scholar 

  13. Byrnes, T. et al. Phys. Rev. Lett. 105, 186402 (2010).

    Article  CAS  Google Scholar 

  14. Yamaguchi, M. et al. Phys. Rev. B 91, 115129 (2015).

    Article  CAS  Google Scholar 

  15. Laussy, F. P. Phys. Rev. Lett. 104, 106402 (2010).

    Article  CAS  Google Scholar 

  16. Cotleţ, O. et al. Phys. Rev. B 93, 054510 (2016).

    Article  CAS  Google Scholar 

  17. Kim, S. et al. Phys. Rev. X 6, 011026 (2016).

    Google Scholar 

  18. Adiyatullin, A. F. et al. Appl. Phys. Lett. 107, 221107 (2015).

    Article  CAS  Google Scholar 

  19. Plumhof, J. et al. Nat. Mater. 13, 247–252 (2014).

    Article  CAS  Google Scholar 

  20. Daskalakis, K. S. et al. Nat. Mater. 13, 271–278 (2014).

    Article  CAS  Google Scholar 

  21. Dietrich, C. P. et al. Sci. Adv. Preprint at http://arxiv.org/abs/1601.06983 (2016).

  22. Liu, X. et al. Nat. Photon. 9, 30–34 (2015).

    Article  CAS  Google Scholar 

  23. Dufferwiel, S. et al. Nat. Commun. 6, 8579 (2015).

    Article  CAS  Google Scholar 

  24. Tischler, J. R. et al. Phys. Rev. Lett. 95, 036401 (2005).

    Article  CAS  Google Scholar 

  25. Khalifa, A. et al. Appl. Phys. Lett. 92, 061107 (2008).

    Article  CAS  Google Scholar 

  26. Bajoni, D. et al. Phys. Rev. B 77, 113303 (2008).

    Article  CAS  Google Scholar 

  27. Tsintzos, S. I. et al. Nature 453, 372–375 (2008).

    Article  CAS  Google Scholar 

  28. Schneider, C. et al. Nature 497, 348–352 (2013).

    Article  CAS  Google Scholar 

  29. Bhattacharya, P. et al. Phys. Rev. Lett. 110, 206403 (2013).

    Article  CAS  Google Scholar 

  30. Agranovich, V. M. et al. Phys. Rev. B 67, 085311 (2003).

    Article  CAS  Google Scholar 

  31. Lagoudakis, P. Nat. Mater. 13, 227–228 (2014).

    Article  CAS  Google Scholar 

  32. Zhang, L. et al. Proc. Natl Acad. Sci. USA 112, 1516 (2015).

    Article  CAS  Google Scholar 

  33. Liew, T. C. H. et al. Phys. Rev. Lett. 110, 047402 (2013).

    Article  CAS  Google Scholar 

  34. Ryczko, K. et al. J. Appl. Phys. 111, 123503 (2012).

    Article  CAS  Google Scholar 

  35. Shelykh, I. et al. Phys. Rev. B 70, 035320 (2004).

    Article  CAS  Google Scholar 

  36. Nayak, C. et al. Rev. Mod. Phys. 80, 1083 (2013).

    Article  CAS  Google Scholar 

  37. Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).

  38. Qi, X. L. & Zhang, S.-C. Rev. Mod. Phys. 83, 1057 (2011).

    Article  CAS  Google Scholar 

  39. Haldane, F. D. M. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  CAS  Google Scholar 

  40. Aidelsburger, M. et al. Nat. Phys. 11, 162–166 (2015).

    Article  CAS  Google Scholar 

  41. Jotzu, G. et al. Nature 515, 237–240 (2014).

    Article  CAS  Google Scholar 

  42. Rechtsman, M. C. et al. Nature 496, 196–200 (2013).

    Article  CAS  Google Scholar 

  43. Hafezi, M. et al. Nat. Photon. 7, 1001–1005 (2013).

    Article  CAS  Google Scholar 

  44. Karzig, T. et al. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  45. Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Phys. Rev. Lett. 114, 116401 (2015).

    Article  CAS  Google Scholar 

  46. Bardyn, C.-E. et al. Phys. Rev. B 91, 161413 (2015).

    Article  CAS  Google Scholar 

  47. Panzarini, G. et al. Phys. Rev. B 59, 5082 (1999).

    Article  CAS  Google Scholar 

  48. Sala, V. G. et al. Phys. Rev. X 5, 011034 (2015).

    Google Scholar 

  49. Neupert, T. et al. Phys. Rev. Lett. 106, 236804 (2011).

    Article  CAS  Google Scholar 

  50. Tang, E. et al. Phys. Rev. Lett. 106, 236802 (2011).

    Article  CAS  Google Scholar 

  51. Schneider, C. et al. Rep. Prog. Phys. http://arxiv.org/abs/1510.07540 (2015).

  52. Byrnes, T. et al. Phys. Rev. B 81, 205312 (2010).

    Article  CAS  Google Scholar 

  53. Viefers, S. J. Phys. Cond. Mat. 20, 123202 (2008).

    Article  CAS  Google Scholar 

  54. Cooper, N. R. Adv. Phys. 57, 539–616 (2008).

    Article  CAS  Google Scholar 

  55. Schweikhard, V. et al. Phys. Rev. Lett. 92, 040404 (2004).

    Article  CAS  Google Scholar 

  56. Bonderson, P., Kitaev, A. & Shtengel, K. Phys. Rev. Lett. 96, 016803 (2006).

    Article  CAS  Google Scholar 

  57. Paredes, B. et al. Phys. Rev. Lett. 87, 010402 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, M., Höfling, S. & Yamamoto, Y. Physics and applications of exciton–polariton lasers. Nature Mater 15, 1049–1052 (2016). https://doi.org/10.1038/nmat4762

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing