Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dislocation locking versus easy glide in titanium and zirconium

Abstract

The ease of a metal to deform plastically in selected crystallographic planes depends on the core structure of its dislocations. As the latter is controlled by electronic interactions, metals with the same valence electron configuration usually exhibit a similar plastic behaviour. For this reason, titanium and zirconium, two transition metals of technological importance from the same column of the periodic table, have so far been assumed to deform in a similar fashion. However, we show here, using in situ transmission electron microscopy straining experiments, that plasticity proceeds very differently in these two metals, being intermittent in Ti and continuous in Zr. This observation is rationalized using first-principles calculations, which reveal that, in both metals, dislocations may adopt the same set of different cores that are either glissile or sessile. An inversion of stability of these cores between Zr and Ti is shown to be at the origin of the profoundly different plastic behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dislocation locking–unlocking mechanism in Ti at 150 K revealed by in situ TEM straining experiments.
Figure 2: Dislocation glide in a prismatic plane in Ti at 150 K.
Figure 3: Dislocation glide in a prismatic plane in Zr at 150 K.
Figure 4: Ab initio modelling of a screw dislocation in Ti.
Figure 5: Ab initio modelling of a screw dislocation in Zr.
Figure 6: Electronic density of states in Ti and Zr.

Similar content being viewed by others

References

  1. Peierls, R. The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940).

    Article  Google Scholar 

  2. Nabarro, F. R. N. Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272 (1947).

    Article  CAS  Google Scholar 

  3. Hirth, J. P. & Lothe, J. Theory of Dislocations 2nd edn (Wiley, 1982).

    Google Scholar 

  4. Legrand, B. Relation between the electronic structure and ease of gliding in hexagonal close-packed metals. Philos. Mag. B 49, 171–184 (1984).

    Article  CAS  Google Scholar 

  5. Caillard, D. & Martin, J. L. Thermally Activated Mechanisms in Crystal Plasticity (Pergamon, 2003).

    Google Scholar 

  6. Domain, C. Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys. J. Nucl. Mater. 351, 1–19 (2006).

    Article  CAS  Google Scholar 

  7. Clouet, E. Screw dislocation in zirconium: An ab initio study. Phys. Rev. B 86, 144104 (2012).

    Article  Google Scholar 

  8. Ghazisaeidi, M. & Trinkle, D. Core structure of a screw dislocation in Ti from density functional theory and classical potentials. Acta Mater. 60, 1287–1292 (2012).

    Article  CAS  Google Scholar 

  9. Tarrat, N. et al. Screw dislocation in hcp Ti: DFT dislocation excess energies and metastable core structures. Modelling Simul. Mater. Sci. Eng. 22, 055016 (2014).

    Article  Google Scholar 

  10. Biget, M. P. & Saada, G. Low-temperature plasticity of high-purity α-titanium single crystals. Philos. Mag. A 59, 747–757 (1989).

    Article  CAS  Google Scholar 

  11. Naka, S., Lasalmonie, A., Costa, P. & Kubin, L. P. The low-temperature plastic deformation of α titanium and the core structure of a-type screw dislocations. Philos. Mag. A 57, 717–740 (1988).

    Article  CAS  Google Scholar 

  12. Guyot, P. & Dorn, J. E. A critical review of the Peierls mechanism. Can. J. Phys. 45, 983–1016 (1967).

    Article  Google Scholar 

  13. Farenc, S., Caillard, D. & Couret, A. An in situ study of prismatic glide in α titanium at low temperatures. Acta Metall. Mater. 41, 2701–2709 (1993).

    Article  CAS  Google Scholar 

  14. Farenc, S., Caillard, D. & Couret, A. A new model for the peak of activation area of α titanium. Acta Metall. Mater. 43, 3669–3678 (1995).

    Article  CAS  Google Scholar 

  15. Šob, M., Kratochvíl, J. & Kroupa, F. Theory of strengthening of alpha titanium by interstitial solutes. Czech. J. Phys. B 25, 872–890 (1975).

    Article  Google Scholar 

  16. Naka, S., Kubin, L. P. & Perrier, C. The plasticity of titanium at low and medium temperatures. Philos. Mag. A 63, 1035–1043 (1991).

    Article  CAS  Google Scholar 

  17. Chaari, N., Clouet, E. & Rodney, D. First-principles study of secondary slip in zirconium. Phys. Rev. Lett. 112, 075504 (2014).

    Article  Google Scholar 

  18. Chaari, N., Clouet, E. & Rodney, D. First order pyramidal slip of screw dislocations in zirconium. Metall. Mater. Trans. A 45, 5898–5905 (2014).

    Article  CAS  Google Scholar 

  19. Rapperport, K. E. J. & Hartley, C. S. Deformation modes of zirconium at 77°, 575°, and 1075°K. Trans. Am. Inst. Min. Eng. 218, 869–876 (1960).

    Google Scholar 

  20. Mills, D. & Craig, G. B. The plastic deformation of zirconium–oxygen alloy single crystals in the range 77 to 950 K. Trans. Am. Inst. Min. Eng. 242, 1881–1890 (1968).

    Google Scholar 

  21. Soo, P. & Higgins, G. T. The deformation of zirconium–oxygen single crystals. Acta Metall. 16, 177–186 (1968).

    Article  CAS  Google Scholar 

  22. Akhtar, A. & Teghtsoonian, A. Plastic deformation of zirconium single crystals. Acta Metall. 19, 655–663 (1971).

    Article  CAS  Google Scholar 

  23. Bacon, D. & Vitek, V. Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals. Metall. Mater. Trans. A 33, 721–733 (2002).

    Article  Google Scholar 

  24. Kubin, L. Dislocations, Mesoscale Simulations and Plastic Flow (Oxford Series on Materials Modelling, Oxford University Press, 2013).

    Book  Google Scholar 

  25. Weinberger, C. R., Tucker, G. J. & Foiles, S. M. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory. Phys. Rev. B 87, 054114 (2013).

    Article  Google Scholar 

  26. Dezerald, L. et al. Ab initio modeling of the two-dimensional energy landscape of screw dislocations in bcc transition metals. Phys. Rev. B 89, 024104 (2014).

    Article  Google Scholar 

  27. Rao, S., Venkateswaran, A. & Letherwood, M. Molecular statics and molecular dynamics simulations of the critical stress for motion of screw dislocations in α-Ti at low temperatures using a modified embedded atom method potential. Acta Mater. 61, 1904–1912 (2013).

    Article  CAS  Google Scholar 

  28. Yu, Q. et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science 347, 635–639 (2015).

    Article  CAS  Google Scholar 

  29. Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  30. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  31. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  32. Ducastelle, F. Order and Phase Stability in Alloys (North-Holland, 1991).

    Google Scholar 

  33. Hartley, C. S. & Mishin, Y. Characterization and visualization of the lattice misfit associated with dislocation cores. Acta Mater. 53, 1313–1321 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed using HPC resources from GENCI-CINES, -TGCC and -IDRIS (Grant 2014-096847). The authors also acknowledge PRACE for awarding them access to the Curie resources based in France at TGCC (project PlasTitZir). They are grateful to D. Chaubet and J.-L. Béchade for processing the initial zirconium Van Arkel material. They also want to thank B. Arnal for his help in specimen preparation, and B. Legrand and F. Willaime for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.C. and N.C. performed the ab initio calculations with the help of D.R.; D.C. performed the in situ TEM straining experiments; and F.O. prepared the Zr samples for these experiments. E.C., D.C. and D.R. prepared the manuscript. All the authors discussed the results and reviewed the paper.

Corresponding author

Correspondence to Emmanuel Clouet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clouet, E., Caillard, D., Chaari, N. et al. Dislocation locking versus easy glide in titanium and zirconium. Nature Mater 14, 931–936 (2015). https://doi.org/10.1038/nmat4340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing