Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation

Subjects

Abstract

Many catalytic reactions under fixed conditions exhibit oscillatory behaviour. The oscillations are often attributed to dynamic changes in the catalyst surface. So far, however, such relationships were difficult to determine for catalysts consisting of supported nanoparticles. Here, we employ a nanoreactor to study the oscillatory CO oxidation catalysed by Pt nanoparticles using time-resolved high-resolution transmission electron microscopy, mass spectrometry and calorimetry. The observations reveal that periodic changes in the CO oxidation are synchronous with a periodic refacetting of the Pt nanoparticles. The oscillatory reaction is modelled using density functional theory and mass transport calculations, considering the CO adsorption energy and the oxidation rate as site-dependent. We find that to successfully explain the oscillations, the model must contain the phenomenon of refacetting. The nanoreactor approach can thus provide atomic-scale information that is specific to surface sites. This will improve the understanding of dynamic properties in catalysis and related fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A nanoreactor loaded with Pt nanoparticles catalysing CO oxidation.
Figure 2: Correlation of oscillatory CO oxidation reaction data with the projected morphology of a Pt nanoparticle.
Figure 3: Atomic-scale visualization of the dynamic refacetting of a Pt nanoparticle during the oscillatory CO oxidation.
Figure 4: Microkinetic modelling of CO and O coverage as well as CO oxidation reaction rate on Pt surfaces.

Similar content being viewed by others

References

  1. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    Article  Google Scholar 

  2. Newton, M. A., Belver-Coldeira, C., Martínez-Arias, A. & Fernandez-García, M. Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nature Mater. 6, 528–532 (2007).

    Article  CAS  Google Scholar 

  3. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core-shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  Google Scholar 

  4. Yoshida, H. et al. Temperature-dependent change in shape of platinum nanoparticles supported on CeO2 during catalytic reactions. Appl. Phys. Exp. 4, 065001 (2011).

    Article  Google Scholar 

  5. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    Article  CAS  Google Scholar 

  6. Boyes, E. D. & Gai, P. L. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219–232 (1997).

    Article  CAS  Google Scholar 

  7. Thomas, J. M. & Somorjai, G. A. (eds) Top. Catal. 8 (special issue), 1–140 (1999).

    Article  Google Scholar 

  8. Campbell, C. T. Catalysts under pressure. Science 294, 1471–1472 (2001).

    Article  CAS  Google Scholar 

  9. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nature Chem. 4, 873–886 (2012).

    Article  CAS  Google Scholar 

  10. Topsøe, H. Developments in operando studies and in situ characterization of heterogeneous catalysts. J. Catalys. 216, 155–164 (2003).

    Article  Google Scholar 

  11. Freund, H. J., Meijer, G., Scheffler, M., Schlögl, R. & Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50, 10064–10094 (2011).

    Article  CAS  Google Scholar 

  12. Imbihl, R. & Ertl, G. Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697–733 (1995).

    Article  CAS  Google Scholar 

  13. Liauw, M. A., Plath, P. J. & Jaeger, N. I. Complex oscillations and global coupling during the catalytic oxidation of CO. J. Chem. Phys. 104, 6375–6386 (1996).

    Article  CAS  Google Scholar 

  14. Matera, S. & Reuter, K. Transport limitations and bistability for in situ CO oxidation at RuO2 (110): First-principles based multiscale modeling. Phys. Rev. B 82, 085446 (2010).

    Article  Google Scholar 

  15. Turner, J. E., Sales, B. C. & Maple, M. B. Oscillatory oxidation of CO over a Pt catalyst. Surf. Sci. 103, 54–74 (1981).

    Article  CAS  Google Scholar 

  16. Hendriksen, B. L. M., Bobaru, S. C. & Frenken, J. W. M. Bistability and oscillations in CO oxidation studied with scanning tunneling microscopy inside a reactor. Catal. Today 105, 234–243 (2005).

    Article  CAS  Google Scholar 

  17. Harris, P. J. F. Sulphur-induced faceting of platinum catalyst particles. Nature 323, 792–794 (1986).

    Article  CAS  Google Scholar 

  18. Contard, L. C. et al. Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem. Int. Ed. 46, 3683–3685 (2007).

    Article  Google Scholar 

  19. Hansen, L. P. et al. Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angew. Chem. Int. Ed. 50, 10153–10156 (2011).

    Article  CAS  Google Scholar 

  20. Giorgio, S. et al. Environmental electron microscopy (ETEM) for catalysts with a closed e-cell with carbon windows. Ultramicroscopy 106, 503–507 (2006).

    Article  CAS  Google Scholar 

  21. Creemer, J. F. et al. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 337, 209–212 (2008).

    Google Scholar 

  22. Creemer, J. F. et al. Proc. 2011 IEEE 24th Int. Conf. MEMS 1103–1106 (IEEE, 2011).

    Google Scholar 

  23. Allard, L. F. et al. Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc. Microanal. 18, 656–666 (2012).

    Article  CAS  Google Scholar 

  24. Baker, R. T. K. In situ electron microscopy studies of catalyst particle behavior. Catal. Rev. Sci. Eng. 19, 161–209 (1979).

    Article  CAS  Google Scholar 

  25. Sharma, R. & Crozier, P. in Handbook of Microscopy for Nanotechnology Vol. 531 (eds Yao, N. & Wang, Z. L.) (Kluwer Academic Publishers, 2005).

    Google Scholar 

  26. Chenna, S. & Crozier, P. A. Operando transmission electron microscopy: A technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal. 2, 2395–2402 (2012).

    Article  CAS  Google Scholar 

  27. Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. & Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nature Mater. 2, 532–536 (2003).

    Article  CAS  Google Scholar 

  28. Jensen, R. et al. Self-sustained carbon monoxide oxidation oscillations on size-selected platinum nanoparticles at atmospheric pressure. Phys. Chem. Chem. Phys. 15, 2698–2702 (2013).

    Article  CAS  Google Scholar 

  29. Ackermann, M. D. et al. Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys. Rev. Lett. 95, 255505 (2005).

    Article  CAS  Google Scholar 

  30. Li, W. X. et al. Oxidation of Pt(110). Phys. Rev. Lett. 30, 146104 (2004).

    Article  Google Scholar 

  31. Jiang, T. et al. Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J. Phys. Chem. C 113, 10548–10553 (2009).

    Article  CAS  Google Scholar 

  32. Falsig, H. et al. On the structure sensitivity of direct NO decomposition over low-index transition metals facets. Top. Catal. 57, 80–88 (2014).

    Article  CAS  Google Scholar 

  33. Carlsson, P. A., Zhdanov, V. P. & Skoglundh, M. Self-sustained kinetic oscillations in CO oxidation over silica-supported Pt. Phys. Chem. Chem. Phys. 8, 2703–2706 (2006).

    Article  CAS  Google Scholar 

  34. Thostrup, P. et al. Adsorption-induced step formation. Phys. Rev. Lett. 87, 126102 (2001).

    Article  CAS  Google Scholar 

  35. Tao, F. et al. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010).

    Article  CAS  Google Scholar 

  36. Vogel, D. et al. Local catalytic ignition during CO oxidation on low-index Pt and Pd surfaces: A combined PEEM, MS, and DFT study. Angew. Chem. Int. Ed. 51, 10041–10044 (2012).

    Article  CAS  Google Scholar 

  37. Johánek, V. et al. Fluctuations and bistabilities on catalyst nanoparticles. Science 304, 1639–1644 (2004).

    Article  Google Scholar 

  38. Gorodetskii, V. et al. Coupling between adjacent crystal planes in heterogeneous catalysis by propagating reaction–diffusion waves. Nature 370, 276–279 (1994).

    Article  CAS  Google Scholar 

  39. Robertson, J. K. & Wise, K. D. Modeling a microfluidic system using Knudsen’s empirical equation for flow in the transition regime. J. Vac. Sci. Technol. A 19, 358–364 (2001).

    Article  CAS  Google Scholar 

  40. Vendelbo, S. B. et al. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy. Ultramicroscopy 133, 72–79 (2013).

    Article  CAS  Google Scholar 

  41. Jinchek, J. R. & Helveg, S. Image resolution and sensitivity in an environmental transmission electron microscope. Micron 11, 1156–1168 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed in the framework of NIMIC (Nano IMaging under Industrial Conditions), a SmartMix project of the Dutch Ministry of Economic Affairs. The authors acknowledge support from J.C. Wolff and J. van Wingerden (DIMES Technology Centre), G.J.C. van Baarle (Leiden Probe Microscopy BV), and M. Thorhauge and S. Ullmann (Haldor Topsøe A/S). The authors acknowledge Ib Chorkendorff (Technical University of Denmark) for fruitful discussions. Haldor Topsøe A/S is acknowledged for access to its electron microscopy facility. The work is dedicated to the legacy of H. Topsøe and his 100 years of dedication to catalysis and fundamental science.

Author information

Authors and Affiliations

Authors

Contributions

J.F.C., B.M. and L.M. developed and produced the nanoreactors. S.B.V. and P.D. designed and built the specimen holder. S.B.V. and I.P. prepared samples. S.B.V., C.F.E., P.J.K. and S.H. performed the experiments. S.B.V., C.F.E. and S.H. analysed the data. H.F. performed microkinetic modelling. S.B.V. performed reactor simulations. S.H., S.B.V., C.F.E. and H.F. composed the manuscript and it was critically discussed and revised together with J.F.C., P.J.K., B.J.N. and R.R. The project was supervised by S.H.

Corresponding authors

Correspondence to P. J. Kooyman or S. Helveg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3438 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 15030 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 12194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vendelbo, S., Elkjær, C., Falsig, H. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nature Mater 13, 884–890 (2014). https://doi.org/10.1038/nmat4033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing