Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Digital metamaterials

Abstract

Balancing complexity and simplicity has played an important role in the development of many fields in science and engineering. One of the well-known and powerful examples of such balance can be found in Boolean algebra and its impact on the birth of digital electronics and the digital information age. The simplicity of using only two numbers, ‘0’ and ‘1’, in a binary system for describing an arbitrary quantity made the fields of digital electronics and digital signal processing powerful and ubiquitous. Here, inspired by the binary concept, we propose to develop the notion of digital metamaterials. Specifically, we investigate how one can synthesize an electromagnetic metamaterial with a desired permittivity, using as building blocks only two elemental materials, which we call ‘metamaterial bits’, with two distinct permittivity functions. We demonstrate, analytically and numerically, how proper spatial mixtures of such metamaterial bits lead to elemental ‘metamaterial bytes’ with effective material parameters that are different from the parameters of the metamaterial bits. We then apply this methodology to several design examples of optical elements, such as digital convex lenses, flat graded-index digital lenses, digital constructs for epsilon-near-zero (ENZ) supercoupling and digital hyperlenses, thus highlighting the power and simplicity of the methodology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notion of digital metamaterials inspired by digital electronics.
Figure 2: Scattering from the single digital metamaterial ‘bytes’.
Figure 3: Lenses designed with digital metamaterials.
Figure 4: ENZ tunnelling using digital metamaterials.

Similar content being viewed by others

References

  1. Cai, W. & Shalaev, V. M. Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

    Google Scholar 

  2. Eleftheriades, G. V. & Balmain, K. G. Negative Refraction Metamaterials: Fundamental Principles and Applications (IEEE-Wiley, 2005).

    Book  Google Scholar 

  3. Engheta, N. & Ziolkowski, R. Electromagnetic Metamaterials: Physics and Engineering Explorations (IEEE-Wiley, 2006).

    Book  Google Scholar 

  4. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  CAS  Google Scholar 

  5. Engheta, N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    Article  CAS  Google Scholar 

  6. Alu, A., Bilotti, F., Engheta, N. & Vegni, L. Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna. IEEE Trans. Antennas Propag. 55, 1698–1708 (2007).

    Article  Google Scholar 

  7. Alu, A., Engheta, N., Erontuk, A. & Ziolkowski, R. Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications. URSI Radio Sci. Bull. 319, 6–19 (2006).

    Google Scholar 

  8. Jiang, Z. H. et al. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength inclusions. Sci. Rep. 3, 1571 (2013).

    Article  Google Scholar 

  9. Choi, M. et al. A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–373 (2011).

    Article  CAS  Google Scholar 

  10. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  CAS  Google Scholar 

  11. Soukoulis, C. M. & Wegener, M. Optical metamaterials—more bulky and less lossy. Science 330, 1633–1634 (2010).

    Article  CAS  Google Scholar 

  12. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  13. Liu, N., Liu, H., Zhu, S. & Giessen, H. Stereometamaterials. Nature Photon. 3, 157–162 (2009).

    Article  CAS  Google Scholar 

  14. Sun, Y., Edwards, B., Alù, A. & Engheta, N. Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nature Mater. 11, 208–212 (2012).

    Article  CAS  Google Scholar 

  15. Monticone, F., Estakhri, N. M. & Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013).

    Article  Google Scholar 

  16. Caglayan, H., Hong, S-H., Edwards, B., Kagan, C. R. & Engheta, N. Near-infrared metatronic nanocircuits by design. Phys. Rev. Lett. 111, 073904 (2013).

    Article  Google Scholar 

  17. Milton, G. W. Bounds on the transport and optical properties of a two-component composite material. J. Appl. Phys. 52, 5294–5304 (1981).

    Article  Google Scholar 

  18. Yun, S. et al. Low-loss impedance-matched optical metamaterials with zero-phase delay. ACS Nano 6, 4475–4482 (2012).

    Article  CAS  Google Scholar 

  19. Maas, R., Parsons, J., Engheta, N. & Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nature Photon. 7, 907–912 (2013).

    Article  CAS  Google Scholar 

  20. Sihvola, A. H. Electromagnetic Mixing Formulas and Applications (IET, 1999).

    Book  Google Scholar 

  21. Chettiar, U. K. & Engheta, N. Internal homogenization: Effective permittivity of a coated sphere. Opt. Express 20, 22976–22986 (2012).

    Article  Google Scholar 

  22. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  23. Bass, M. et al. Handbook of Optics (McGraw Hill, 1995).

    Google Scholar 

  24. Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005).

    Article  CAS  Google Scholar 

  25. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006).

    Article  Google Scholar 

  26. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical Hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Article  Google Scholar 

  27. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article  CAS  Google Scholar 

  28. Silveirinha, M. & Engheta, N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ɛ near-zero metamaterials. Phys. Rev. B 76, 245109 (2007).

    Article  Google Scholar 

  29. Alù, A., Silveirinha, M. & Engheta, N. Transmission-line analysis of ɛ-near-zero–filled narrow channels. Phys. Rev. E 78, 016604 (2008).

    Article  Google Scholar 

  30. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article  Google Scholar 

  31. Engheta, N. Pursuing near-zero response. Science 340, 286–287 (2013).

    Article  CAS  Google Scholar 

  32. Alù, A. & Engheta, N. Dielectric sensing in ɛ-near-zero narrow waveguide channels. Phys. Rev. B 78, 045102 (2008).

    Article  Google Scholar 

  33. www.comsol.com

  34. www.mathworks.com/products/matlab/

  35. www.cst.com

Download references

Acknowledgements

This work is supported in part by the US Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) Program, with grant number N00014-10-1-0942.

Author information

Authors and Affiliations

Authors

Contributions

C.D.G. carried out analytical modelling, numerical simulations and material-parameter retrieval. N.E., as the principal investigator of the project, conceived the idea, suggested the designs, planned, coordinated and supervised the work. Both authors discussed the theoretical and numerical aspects and interpreted the results. Both authors contributed to the preparation and writing of the manuscript.

Corresponding authors

Correspondence to Cristian Della Giovampaola or Nader Engheta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Giovampaola, C., Engheta, N. Digital metamaterials. Nature Mater 13, 1115–1121 (2014). https://doi.org/10.1038/nmat4082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing